
Mapping Dark Matter to Sunyaev-Zel’dovich
with Neural Networks

1. Convolutional Neural Network (CNN) approach
2. DeepSet approach
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Motivation

• goal: predict baryonic fields from gravity-only (N-body)
simulations

• simplification: astrophysical processes are more local
than gravity, baryons trace DM distribution fairly well→
local machine-learning approach

• 1st use: rapidly generate vast amounts of data, to:
• model summary statistics and their distribution
• model cross-correlations (e.g. WL-tSZ)
• perform likelihood-free inference (at summary-statistic- or
field-level)

• 2nd use: interpret and learn something about the
connection between astrophysics and cosmology

• focus in this talk: Sunyaev-Zel’dovich effects
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Teaching neural networks to generate Fast
Sunyaev Zel’dovich Maps
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Idea
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• simulation data from IllustrisTNG300 and zoom-ins
• work directly with 3-dimensional field
• only z = 0 so far 2/9



Sparsity
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Few interesting voxels
→ biased training samples:

zoom-ins for tSZ,
mass biases o/wise

Tailed distributions
→ input transformation
→ epoch-dependent loss function
→ semi-analytic models
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Network & Training

Tune hyperparameters & network architecture on electron
pressure, then apply to density & momentum. Spatial problem
with translational symmetry→ convolutional net (CNN).
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Results: electron pressure (tSZ)
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→ projection improves network-fiducial agreement
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DeepSets applied to Clusters:
Machine learning the Lagrangian way

Leander Thiele, Miles Cranmer, William Coulton,
Shirley Ho, David N. Spergel

work in progress!



Problems with previous approach, and what they teach us

• ended up concentrating training on massive halos→ let
us focus on those for now!

• if we only want to work with halos, translational symmetry
is broken (finding halo centers is a mostly solved problem)

• with CNNs we spend a lot of resources on boring regions
because we need to cover large scales but still require
decent resolution because scales are coupled

• interpretability is rather poor
• maybe CNNs are not the best approach!
• (not related to CNN architecture) there is stochasticity in
the baryonic fields which we should try to model
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Idea

• Given Dark Matter particles within O(1)Rhalo. Can we work
directly with this simulation representation?

• This is a set of features (no ordering)→
rotation-equivariant DeepSet.

• Intuition: the simulation representation should be ideal to
overcome the sparsity problem.

• Incorporate stochasticity using a conditional VAE
architecture.

• architecture components (modular=interpretable):
• spherically symmetric approximation
• miscentering correction
• deformations
• local environment (∼ 100 kpc)
• halo-scale features
• probabilistic 7/9



Preliminary results

• B12 = Battaglia+2012 GNFW with best fit parameters
• overfitting a constant problem (only working with
IllustrisTNG300)

• this plot does not include the entire network architecture!
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Conclusions

• CNN produces good results on select summary statistics
• but sparsity and coupling between scales make us believe
CNNs may not be ideal architecture

• stochasticity is likely a subleading correction but should
also be accounted for if the distribution of summary
statistics is desired

• DeepSet approach appears more natural, stay tuned!
• future work:

• combine DeepSet architecture with CNN, test performance
on summary statistics

• interpret the trained DeepSet architecture
• z > 0, lightcones
• multifield
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Backup electron pressure (tSZ) I
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Backup electron density (optical depth)
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→ ρe easier target than Pe: Pe ∼ ρeTe



Backup electron momentum density (kSZ)
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Backup cross-correlations
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Backup DeepSet Architecture

r⃗ = baryon position

q⃗ = DM position test

test

test= scalar DeepSet

= vector DeepSet

= MLP

(scalars and vectors describing halo passed at various points)

Pe(⃗r)f

Deformer

Pe(|⃗r|)Mhalo

+r⃗

OriginDM(⃗q)

Aggregator

LocalDM(|⃗q− r⃗| < Rlocal) ⟨·, r⃗⟩

Halo+

Encoderdownsampled Pe

N(⃗0, 1)
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