Mapping Dark Matter to Sunyaev-Zel'dovich

with Neural Networks

1. Convolutional Neural Network (CNN) approach

2. DeepSet approach

Leander Thiele (Princeton)



- goal: predict baryonic fields from gravity-only (N-body)
simulations
- simplification: astrophysical processes are more local
than gravity, baryons trace DM distribution fairly well —
local machine-learning approach
- 1st use: rapidly generate vast amounts of data, to:
- model summary statistics and their distribution
- model cross-correlations (e.g. WL-tSZ)
- perform likelihood-free inference (at summary-statistic- or
field-level)
- 2nd use: interpret and learn something about the
connection between astrophysics and cosmology

- focus in this talk: Sunyaev-Zel'dovich effects
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Teaching neural networks to generate Fast
Sunyaev Zel'dovich Maps

Leander Thiele, Francisco Villaescusa-Navarro, David N. Spergel,
Dylan Nelson, Annalisa Pillepich
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- simulation data from IllustrisTNG300 and zoom-ins
- work directly with 3-dimensional field
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Few interesting voxels

— biased training samples:
zoom-ins for tSz,
mass biases o/wise
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Network & Training

Tune hyperparameters & network architecture on electron
pressure, then apply to density & momentum. Spatial problem
with translational symmetry — convolutional net (CNN).
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Results: electron pressure (tSZ)
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— projection improves network-fiducial agreement
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DeepSets applied to Clusters:
Machine learning the Lagrangian way

Leander Thiele, Miles Cranmer, William Coulton,
Shirley Ho, David N. Spergel

work in progress!



Problems with previous approach, and what they teach us

- ended up concentrating training on massive halos — let
us focus on those for now!

- if we only want to work with halos, translational symmetry
is broken (finding halo centers is a mostly solved problem)

- with CNNs we spend a lot of resources on boring regions
because we need to cover large scales but still require
decent resolution because scales are coupled

- Interpretability is rather poor
- maybe CNNs are not the best approach!

- (not related to CNN architecture) there is stochasticity in
the baryonic fields which we should try to model
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- Given Dark Matter particles within O(1)Rp,0. Can we work
directly with this simulation representation?
- This is a set of features (no ordering) —
rotation-equivariant DeepSet.
- Intuition: the simulation representation should be ideal to
overcome the sparsity problem.
- Incorporate stochasticity using a conditional VAE
architecture.
- architecture components (modular=interpretable):
- spherically symmetric approximation
. mlscenterlng correction
- deformations
- local environment (~ 100 kpc)
- halo-scale features

- probabilistic oS



Preliminary results
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- B12 = Battaglia+2012 GNFW with best fit parameters
- overfitting a constant problem (only working with
[LlustrisTNG300)

- this plot does not include the entire network architecture!
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Conclusions

- CNN produces good results on select summary statistics

- but sparsity and coupling between scales make us believe
CNNs may not be ideal architecture

- stochasticity is likely a subleading correction but should
also be accounted for if the distribution of summary
statistics is desired

- DeepSet approach appears more natural, stay tuned!
- future work:
- combine DeepSet architecture with CNN, test performance
on summary statistics
- interpret the trained DeepSet architecture
- 72> 0, lightcones
- multifield
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Backup electron pressure (tS2) |
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—— network ---- s.-a. model — target

10721 4

10722 4

power spectrum P(k)

10-23 4

10-24 4

107* 10° 10*
wavenumber k[AMpc~1]

— pe easier target than Pe: Pe ~ peTe



Backup electron momentum density (kSZ)
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— sub-optimal network architecture for vectors



Backup cross-correlations
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— model quality is important



Backup DeepSet Architecture
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