Cosmological constraints from unWISE and Planck CMB lensing cross-correlation

Alex Krolewski AMTD Fellow, Waterloo Centre for Astrophysics & Perimeter Institute

10 Aug 2021 CMBS4 meeting arXiv: 2105.03421 (with Simone Ferraro & Martin White)

CMB LENSING TOMOGRAPHY

- Tomography: lensing by galaxy samples at different redshifts probes growth of structure
- Need gg and kg to break b-σ₈ degeneracy

 $P_{gg} \propto b(k,z)^2 \sigma_8^2 P_m$ $P_{\kappa g} \propto b(k,z)\sigma_8^2 P_m$ $\longrightarrow \sigma_8 \propto \frac{C_{\ell}^{\kappa g}}{\sqrt{C_{\ell}^{gg}}}$

S₈ TENSION IN WEAK LENSING

0.8

0.6

- ► Weak lensing surveys find $S_8 \equiv \sigma_8 \sqrt{\Omega_m}$ ~ 10% (~2-3 σ) lower than Planck (+ also some galaxy clustering analyses)
- CMB lensing cross-correlation: test of the lensing tension with different system¹²/_{6 10}

unWISE: BUILDING THE BEST CMB-LSS CORRELATION

- ► Advantages of WISE:
 - ► All-sky satellite mission
 - Infrared survey (3.4, 4.6 µm): negative K-correction for old stellar populations—measure galaxies out to z~2

2B galaxies publicly available at <u>catalog.unwise.me</u>

catalog paper: Schlafly et al. (2020), 1901.03337

coadd paper: Meisner et al. (2020), 1909.05444

See all the unWISE galaxies at:

legacysurvey.org/viewer (credit to Dustin Lang)

unWISE GALAXY SAMPLES

Selecting unWISE galaxies

Sample	<z></z>	Number density (deg ⁻²)
Blue	0.6	3409
Green	1.1	1868
Red	1.5	144

 Define 3 samples using unWISE colors and remove stars using GAIA photometry (1% residual stellar contamination)

unWISE SKY DISTRIBUTION

Ω

Green: z~1.0 sample

CMB LENSING FROM PLANCK

Planck 2018 minimum-variance lensing maps + masks

unWISE REDSHIFT DISTRIBUTION

- Spectroscopic-photometric cross-correlation gives b(z) * dN/ dz (uncertainty is propagated to cosmological constraints)
- Fully consistent with dN/dz from deep-field photometric surveys (given plausible bias evolution)

THEORY MODEL

➤ Hybrid PT/empirical model: linear bias times Halofit, plus higher bias terms $P_{gg} = b_1^2 P_{mm,Halofit} + higher bias + Shot Noise$

 $P_{gm} = b_1 P_{mm, \text{Halofit}} + \text{higher bias}$

- ► Fix cosmology & $b_2(z)/b_s(z)$ in higher bias terms
- ► Magnification bias also included, with 10% prior on the slope (s)
- Redshift distribution measured from cross-correlations with spectroscopic galaxies: linear bias evolution automatically included

RECOVERING UNBIASED COSMOLOGY ON MOCKS

- ► Goal: plausible mocks to test theory model (not to calibrate model or covariances)
- ► Match the number density, bias evolution, and b(z) * dN/dz (i.e. from clustering redshifts)
- ► Can recover unbiased cosmology to $\ell_{max} = 300$ for blue, green (250 for red)

IMPACT OF REDSHIFT UNCERTAINTY

Marginalize over redshift
distribution uncertainty by
sampling noise-realizations of
b(z) * dN/dz

- <15% impact on marginalized Ω_m and σ₈
- ➤ 20-50% impact on S₈ (largest for blue)

RESULTS

- ► Vary Ω_m , logA; fix n_s and Ω_b to Planck values; fix $\Omega_m h^3 = 0.09633$
- unWISE constraints:
 - Ω_m = 0.295 ± 0.017 (P18: 0.315 ± 0.017)
 - ► $\sigma_8 = 0.783 \pm 0.028$ (P18: 0.811 ± 0.006)
 - > $S_8 = 0.776 \pm 0.017$ (P18: 0.832 ± 0.013)

RESULTS

➤ We find ~2.6σ tension with Planck in S₈ for our fiducial blue+green combined constraint (similar to KiDS, DES-Y1, DES-Y3 results)

STATUS OF THE LENSING TENSION

