CMB lensing cross-correlations with large-scale structure surveys
Probes of late-time structure

- $\delta_g(\hat{n})$
- $\gamma_g(\hat{n})$
- $N_c(\lambda, z)$
- $\delta_c(\hat{n}; \lambda)$
- $\nu_r(\hat{n})$

- $\kappa(\hat{n})$
- $y(\hat{n})$
- $\Delta_{CMB}(\hat{n})$
- $\Delta_{KSZ}(\hat{n})$
- $\Delta_{CTB}(\hat{n})$
Probes of late-time structure

I'll talk about this
What I won’t talk about: tSZ tomography

- Constrain z-evolution of gas pressure and mass bias
- Connection to gas thermodynamics.

Koukoufilippas et al. 2019

Pandey et al. 2021
Gatti et al. 2021
What I won’t talk about: mass calibration

- CMB lensing can constrain cluster masses with very high precision.
- Particularly important at high z.

Louis & DA 2017
Bartlett & Melin 2015
Madhavacheril et al. 2018
Raghunathan et al. 2021
Zubeldia & Challinor 2019
Baxter et al. 2018
Nicola et al. 2020
What I will talk about: tomography

\[x(\theta, \phi) = \int dz \bar{X}(z) \left[1 + \delta_X(\theta, \phi, z) \right] \]

\[\langle x \delta_g(z_*) \rangle \propto b_X(z_*) \bar{X}(z_*) \]
What I will talk about: tomography

Over time tomography has become synonymous with “$N \times 2pt$” or “extracting information from a combination of projected tracers of structure”

Hadziyska et al. 2021
Tomographic reconstruction: growth

- Consider CMB lensing + δ_g:

\[
C_{\ell}^{\kappa g} \propto \sigma_8^2 b_g \\
C_{\ell}^{gg} \propto (\sigma_8 b_g)^2
\]

So you can measure $\sigma_8(z)$
Tomographic reconstruction: growth

Consider CMB lensing + δ_g:

\[C^{\ell g}_g \propto \sigma_8^2 b_g \]

\[C^{gg}_\ell \propto (\sigma_8 b_g)^2 \]

So you can measure $\sigma_8(z)$

C.f.: Hang et al. 2021, Krolewski et al. 2021
Tomographic reconstruction: growth

- Consider CMB lensing + δ_g:

$$C_{\ell}^{g\kappa} \propto \sigma_8^2 b_g$$

So you can measure $\sigma_8(z)$

C.f.: Hang et al. 2021, Krolewski et al. 2021

- Due to projection you are also sensitive to $\chi(z)$, and P(k).

Yu et al. 2021
Tomographic reconstruction: growth

- Consider CMB lensing + δ_g:
 \[C_{\ell}^{g\kappa} \propto \sigma_8^2 b_g \]
 \[C_{\ell}^{gg} \propto (\sigma_8 b_g)^2 \]

So you can measure $\sigma_8(z)$
C.f.: Hang et al. 2021, Krolewski et al. 2021

- Due to projection you are also sensitive to $\chi(z)$, and $P(k)$.
 Yu et al. 2021

- LSST can do this on its own via cosmic shear, but:
 1. CMB leads to significant improvements in FoM.
 Fang et al. 2021
 2. High redshifts?
Growth reconstruction

Idea: reconstruct the linear amplitude of fluctuations from all relevant projected large-scale structure data.
- Is the growth history compatible with ΛCDM?
- Do different probes agree on this growth history?
- Is the current tension coming from a specific redshift range?
+ Independent analysis of existing datasets (DES, KiDS)
+ Combined constraints on S_8
Tomographic reconstruction: growth

Data:
Shear:
- DES Y1
- KiDS-1000

Clustering:
- DES Y1 (redMaGiC)
- DESI Legacy Survey (DELS)
- eBOSS QSO

CMB lensing:
- Planck 2018 convergence map

Troxel et al. 2017
Elvin-Poole et al. 2017
Asgari et al. 2017
Hang et al. 2020
Neveux et al. 2020
Planck Coll. et al. 2018
Growth reconstruction: the analysis

Model:
- Background: ΛCDM
- Power spectrum at $z=0$: ΛCDM
- Growth history: quadratic spline with free nodes
- Non-linear matter $P(k)$: HALOFIT
- Galaxy bias: linear ($k_{\text{max}} = 0.15 \text{ Mpc}^{-1}$)

\[P_L(k, z) = D^2(z) P_L(k, 0) \]
Tomographic reconstruction: growth

Growth reconstruction: results

\[S_8(z) = \sigma_8(z) \sqrt{\Omega_m/0.3} \]

\[S_8(z) = \sigma_8(z) \sqrt{\Omega_m/0.3} \]

\(z \) values: 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00

Graphs showing the growth reconstruction results with various models and data sets.
Results:
- Lower growth (~2σ) at 0.2<z<0.6
Results:
- Lower growth ($\sim 2\sigma$) at $0.2 < z < 0.6$
- North and South data recover compatible growth histories
Results:
- Lower growth ($\sim 2\sigma$) at $0.2 < z < 0.6$
- North and South data recover compatible growth histories
- Tension driven by shear data
Growth reconstruction: results

Results:
- Lower growth ($\sim 2\sigma$) at $0.2 < z < 0.6$
- North and South data recover compatible growth histories
- Tension driven by shear data
- Clustering + CMBκ compatible with Planck (but also with shear).

But see *Krolewski et al. 2021*!
Growth reconstruction: results

Results:
- Lower growth (~2σ) at 0.2<z<0.6
- North and South data recover compatible growth histories
- Tension driven by shear data
- Clustering + CMBκ compatible with planck (but also with shear).
- Most constraining power at z<0.8. QSOxκ vital for high-z growth.
Growth reconstruction: ΛCDM constraints

Results:
- ΛCDM is an excellent fit to the low-z data
- North and South data compatible
- 3.5σ tension with Planck on S_8
- Driven by cosmic shear data

Tomographic reconstruction: growth

Garcia-Garcia et al. 2021
Arguably the most pernicious non-theoretical systematic:
- Need to characterize all modes of uncertainty in the N(z)

Hadzhiyska et al. 2020
Arguably the most pernicious non-theoretical systematic:
- Need to characterize all modes of uncertainty in the N(z)
 Hadzhiyska et al. 2020
- Can be self-calibrated through internal correlations (to some extent)
 Nicola et al. 2020, Schaan et al. 2020
Arguably the most pernicious non-theoretical systematic:
- Need to characterize all modes of uncertainty in the $N(z)$
 \cite{Hadzhiyska2020}
- Can be self-calibrated through internal correlations
 (to some extent)
 \cite{Nicola2020, Schaan2020}
- CMB κ x-corrs less sensitive to $N(z)$ uncertainties...
- ... so it can help calibrate:
 - $N(z)$ width
 - Hight-z tail of faint samples
 \cite{Alonso2020}
X-correlation systematics: shear calibration

Calibratable through $kx\gamma$ (especially at high-z)

Schaan et al. 2016, Robertson et al. 2021
X-correlation systematics: galaxy bias

- Galaxy clustering is (by far!) the highest S/N tracer.
- Lots of data are thrown away:
 - Large-scale observational systematics (easier in x-corr)
 - **Small-scale galaxy bias**
- At LSST/S4 sensitivities we will need to go beyond linear bias (even on conservative scales).
- Promising avenue: hybrid EFT + simulations method

\[1 + \Delta_g \approx 1 + b_1 \Delta_M + b_2 \Delta^2_M + b_s S^2 + b_\nabla \nabla^2 \Delta_m \]
- Galaxy clustering is (by far!) the highest S/N tracer.
- Lots of data are thrown away:
 - Large-scale observational systematics (easier in x-corr)
 - **Small-scale galaxy bias**
- At LSST/S4 sensitivities we will need to go beyond linear bias (even on conservative scales).
- Promising avenue: hybrid EFT + simulations method
- Demonstration on DESY1 data (*Hadzhiyska et al. 2021*)
 - Good fit up to \(\sim k = 0.6 \, \text{Mpc}^{-1} \)
 - 35% better \(\Omega_m \), 10% better \(S_8 \)
X-correlation systematics: photo-z
Growth reconstruction: the analysis

Data analysis:
- Independent C_ℓ-based analysis
- Analytical covariances inc. mode-coupling.
- $N_d = 1275$

Example: Legacy survey x KiDS
Tomographic reconstruction: growth

Garcia-Garcia et al. 2021

Growth reconstruction: the analysis

Data analysis:
- Independent C_ℓ-based analysis
- Analytical covariances inc. mode-coupling.
- $N_d = 1275$
- Sanity checks:
 * B-modes
 * Impact of GC systematics via deprojection
 * Goodness-of-fit tests

![PDF](image)

<table>
<thead>
<tr>
<th>Tracer name</th>
<th>Bin 0</th>
<th>Bin 1</th>
<th>Bin 2</th>
<th>Bin 3</th>
<th>Bin 4</th>
<th>Tracer name</th>
<th>Bin 0</th>
<th>Bin 1</th>
<th>Bin 2</th>
<th>Bin 3</th>
<th>Bin 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELS-0</td>
<td>0.460</td>
<td>0.135</td>
<td>0.234</td>
<td>0.978</td>
<td>0.650</td>
<td>DES g-0</td>
<td>0.396</td>
<td>0.733</td>
<td>0.704</td>
<td>0.294</td>
<td></td>
</tr>
<tr>
<td>DELS-1</td>
<td>0.011</td>
<td>0.781</td>
<td>0.661</td>
<td>0.105</td>
<td>0.438</td>
<td>DES g-1</td>
<td>0.737</td>
<td>0.983</td>
<td>0.889</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>DELS-2</td>
<td>0.226</td>
<td>0.425</td>
<td>0.752</td>
<td>0.163</td>
<td>0.861</td>
<td>DES g-2</td>
<td>0.378</td>
<td>0.809</td>
<td>0.264</td>
<td>0.288</td>
<td></td>
</tr>
<tr>
<td>DELS-3</td>
<td>0.483</td>
<td>0.324</td>
<td>0.567</td>
<td>0.569</td>
<td>0.269</td>
<td>DES g-3</td>
<td>0.923</td>
<td>0.073</td>
<td>0.905</td>
<td>0.354</td>
<td></td>
</tr>
<tr>
<td>CMBκ</td>
<td>0.280</td>
<td>0.050</td>
<td>0.078</td>
<td>0.167</td>
<td>0.450</td>
<td>DES g-4</td>
<td>0.517</td>
<td>0.048</td>
<td>0.889</td>
<td>0.459</td>
<td></td>
</tr>
<tr>
<td>KiDS-0</td>
<td>0.949</td>
<td>0.604</td>
<td>0.463</td>
<td>0.586</td>
<td>0.761</td>
<td>CMBκ</td>
<td>0.168</td>
<td>0.170</td>
<td>0.432</td>
<td>0.943</td>
<td></td>
</tr>
<tr>
<td>KiDS-1</td>
<td>0.795</td>
<td>0.292</td>
<td>0.877</td>
<td>0.336</td>
<td></td>
<td>DES γ</td>
<td>0.436</td>
<td>0.232</td>
<td>0.630</td>
<td>0.774</td>
<td></td>
</tr>
<tr>
<td>KiDS-2</td>
<td>0.603</td>
<td>0.044</td>
<td>0.006</td>
<td></td>
<td></td>
<td>DES γ</td>
<td>0.545</td>
<td>0.991</td>
<td>0.645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KiDS-3</td>
<td>0.977</td>
<td>0.406</td>
<td></td>
<td></td>
<td></td>
<td>DES γ</td>
<td>0.813</td>
<td>0.245</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KiDS-4</td>
<td>0.977</td>
<td>0.406</td>
<td></td>
<td></td>
<td></td>
<td>DES γ</td>
<td>0.977</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Growth reconstruction: ΛCDM constraints

Results:
- ΛCDM is an excellent fit to the low-z data
- North and South data compatible
- 3.5σ tension with Planck on S_8
- Driven by cosmic shear data
Beefing up clustering

Hybrid EFT bias expansion

- Implementation based on ABACUS simulation.
- Smooth transition between LPT and sims.
Beefing up clustering

Hybrid EFT bias expansion

\[P_{\alpha\beta}(k; \tilde{\theta}) = P_{\alpha\beta}(k; \tilde{\theta}_*) + (\tilde{\theta} - \tilde{\theta}_*) \cdot \nabla_\theta P_{\alpha\beta}(k) \]

\[P_{\alpha\beta}(k; \tilde{\theta}) = \frac{P_{mm}^{HF}(k; \tilde{\theta})}{P_{11}^{AB}(k; \tilde{\theta})} P_{\alpha\beta}^{AB}(k; \tilde{\theta}) \]

- Implementation based on ABACUS simulation.
- Smooth transition between LPT and sims.
- Cosmological dependence of ratio wrt. \(P_{mm}(k) \) through linear derivatives.
Hybrid EFT bias expansion

\[P_{\alpha\beta}(k; \tilde{\theta}) = P_{\alpha\beta}(k; \tilde{\theta}_*) + (\tilde{\theta} - \tilde{\theta}_*) \cdot \nabla_{\theta} P_{\alpha\beta}(k) \]

\[P_{\alpha\beta}(k; \tilde{\theta}) = \frac{P_{mm}^{HF}(k; \tilde{\theta})}{P_{11}^{AB}(k; \tilde{\theta})} P_{\alpha\beta}^{AB}(k; \tilde{\theta}) \]

- Implementation based on **ABACUS simulation**.
- Smooth transition between LPT and sims.
- Cosmological dependence of ratio wrt. \(P_{mm}(k) \) through linear derivatives
Beefing up clustering

Performance on real data

- Markedly improved performance in goodness of fit on high-k
Beefing up clustering

Performance on real data

- Markedly improved performance in goodness of fit on high-k
- 35% better Ω_m
- 10% better S_8

Potential gains in H_0