CMB lensing cross-correlations with large-scale structure surveys

David Alonso (U. Oxford) - Aug. 10th 2021. CMB-S4 Summer meeting

Probes of late-time structure

Legacy Survey of Space and Time

 $\frac{\delta_g(\hat{\mathbf{n}})}{\gamma_g(\hat{\mathbf{n}})}$ $N_c(\lambda, z)$ $\delta_c(\hat{\mathbf{n}}; \lambda)$ $v_r(\hat{\mathbf{n}})$

Probes of late-time structure

What I won't talk about: tSZ tomography

- Constrain z-evolution of gas pressure and mass bias - Connection to gas thermodynamics.

Koukoufilippas et al. 2019

0.2

0.1

0.3

0.4

z

0.5

0.6

0.0 0.0

What I won't talk about: mass calibration

What I will talk about: tomography

$$x(\theta,\phi) = \int dz \,\bar{X}(z) \left[1 + \delta_X(\theta,\phi,z)\right]$$
$$\langle x \,\delta_g(z_*) \rangle \propto b_X(z_*) \bar{X}(z_*)$$

What I will talk about: tomography

Over time tomography has become synonymous with "Nx2pt" or "extracting information from a combination of <u>projected tracers of structure</u>"

- Consider CMB lensing + δ_{σ} :

$$C_{\ell}^{g\kappa} \propto \sigma_8^2 b_g \qquad C_{\ell}^{gg} \propto (\sigma_8 b_g)^2$$

So you can measure $\sigma_8(z)$

• Consider CMB lensing + δ_{g} :

-

$$C_{\ell}^{g\kappa} \propto \sigma_8^2 b_g \qquad C_{\ell}^{gg} \propto (\sigma_8 b_g)^2$$

So you can measure $\sigma_8(z)$ C.f.: <u>Hang et al. 2021</u>, <u>Krolewski et al. 2021</u>

Due to projection you are also sensitive to $\chi(z)$, and P(k). Yu et al. 2021

• Consider CMB lensing + δ_{a} :

$${}_{\ell}^{g\kappa} \propto \sigma_8^2 b_g \qquad C_{\ell}^{gg} \propto (\sigma_8 \, b_g)^2$$

So you can measure $\sigma_8(z)$ C.f.: <u>Hang et al. 2021</u>, <u>Krolewski et al. 2021</u>

- Due to projection you are also sensitive to $\chi(z)$, and P(k). Yu et al. 2021
- LSST can do this on its own via cosmic shear, but:
 - CMB leads to significant improvements in FoM. <u>Fang et al. 2021</u>
 - 2. High redshifts?

Growth reconstruction

Idea: reconstruct the linear amplitude of fluctuations from all relevant *projected* large-scale structure data.

- Is the growth history compatible with ACDM?
- Do different probes agree on this growth history?
- Is the current tension coming from a specific redshift range?
- + Independent analysis of existing datasets (DES, KiDS)
- + Combined constraints on S₈

Garcia-Garcia et al. 2021

Garcia-Garcia et al. 2021

Data:

8

Shear:

- DES Y1
- KiDS-1000

Clustering:

- DES Y1 (redMaGiC)
- DESI Legacy Survey (DELS)
- eBOSS QSO

Renormalized q(z) 6 0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 South D^zata (SD) Ζ North Data (ND)

CMB lensing:

- Planck 2018 convergence map

<u>Troxel et al. 2017</u> <u>Elvin-Poole et al. 2017</u> <u>Asgari et al. 2017</u> <u>Hang et al. 2020</u> <u>Neveux et al. 2020</u> <u>Planck Coll. et al. 2018</u>

Growth reconstruction: the analysis

Model:

- Background: ACDM
- Power spectrum at z=0: Λ CDM
- Growth history: quadratic spline with free nodes
- Non-linear matter Pk: HALOFIT
- Galaxy bias: linear ($\hat{k}_{max} = 0.15 \text{ Mpc}^{-1}$)

$$P_{\rm L}(k,z) = D^2(z) P_L(k,0)$$

Growth reconstruction: results

Garcia-Garcia et al. 2021

Growth reconstruction: results

Growth reconstruction: results

Results:

- Lower growth (~2*o*) at 0.2<z<0.6
- North and South data recover compatible growth histories

Garcia-Garcia et al. 2021

Growth reconstruction: results

Results:

- Lower growth (~2*o*) at 0.2<z<0.6
- North and South data recover compatible growth histories
- Tension driven by shear data

Garcia-Garcia et al. 2021

Growth reconstruction: results

Results:

- Lower growth (~2*o*) at 0.2<z<0.6
- North and South data recover compatible growth histories
- Tension driven by shear data
- Clustering + CMBκ compatible with planck (but also with shear).

But see Krolewski et al. 2021!

Garcia-Garcia et al. 2021

Growth reconstruction: results

Results:

- Lower growth (~2*o*) at 0.2<z<0.6
- North and South data recover compatible growth histories
- Tension driven by shear data
- Clustering + CMB κ compatible with planck (but also with shear).
- Most constraining power at z<0.8.
 QSOxκ vital for high-z growth.

Garcia-Garcia et al. 2021

Growth reconstruction: *A***CDM constraints**

Results:

- ACDM is an excellent fit to the low-z data
- North and South data compatible
- 3.5σ tension with Planck on S₈
- Driven by cosmic shear data

Arguably the most pernicious non-theoretical systematic:

- Need to characterize all modes of uncertainty in the N(z) Hadzhiyska et al. 2020

Arguably the most pernicious non-theoretical systematic:

- Need to characterize all modes of uncertainty in the N(z) Hadzhiyska et al. 2020
- Can be self-calibrated through internal correlations (to some extent) <u>Nicola et al. 2020</u>, <u>Schaan et al. 2020</u>
- CMB κ x-corrs less sensitive to N(z) uncertainties...
- ... so it can help calibrate:
 - N(z) width
 - Hight-z tail of faint samples

Alonso et al. 2020

X-correlation systematics: shear calibration

X-correlation systematics: galaxy bias

- Galaxy clustering is (by far!) the highest S/N tracer.
- Lots of data are thrown away:
 - Large-scale observational systematics (easier in x-corr)
 - Small-scale galaxy bias
- At LSST/S4 sensitivities we will need to go beyond linear bias (even on conservative scales).
- Promising avenue: hybrid EFT + simulations method

<u>Kokron et al. 2021</u> <u>Modi et al. 2020</u>

X-correlation systematics: galaxy bias

- Galaxy clustering is (by far!) the highest S/N tracer.
- Lots of data are thrown away:
 - Large-scale observational systematics (easier in x-corr)
 - Small-scale galaxy bias
- At LSST/S4 sensitivities we will need to go beyond linear bias (even on conservative scales).
- Promising avenue: hybrid EFT + simulations method
- Demonstration on DESY1 data (Hadzhiyska et al. 2021)
 - Good fit up to ~k=0.6 Mpc⁻¹
 - 35% better $\Omega_{\rm m}$, 10% better S $_8$

Garcia-Garcia et al. 2021

Growth reconstruction: the analysis

Data analysis:

- Independent C_l-based analysis
- Analytical covariances inc. mode-coupling.
- $N_{d} = 1275$

Garcia-Garcia et al. 2021

Growth reconstruction: the analysis

Data analysis:

- Independent C_l-based analysis
- Analytical covariances inc. mode-coupling.
- $N_{d} = 1275$
- Sanity checks:
 - * B-modes
 - * Impact of GC systematics via deprojection
 - * Goodness-of-fit tests

Tracer	KiDS					Tracer	DES γ			
name	Bin 0	Bin 1	Bin 2	Bin 3	Bin 4	name	Bin 0	Bin 1	Bin 2	Bin 3
DELS-0	0.460	0.135	0.234	0.978	0.650	DES $g-0$	0.396	0.733	0.704	0.294
DELS-1	0.011	0.781	0.661	0.105	0.438	DES $g-1$	0.737	0.983	0.889	0.071
DELS-2	0.226	0.425	0.752	0.163	0.861	DES $g-2$	0.378	0.809	0.264	0.288
DELS-3	0.483	0.324	0.567	0.569	0.269	DES $g-3$	0.923	0.073	0.905	0.354
$CMB\kappa$	0.280	0.050	0.078	0.167	0.450	DES $g-4$	0.517	0.048	0.889	0.459
KiDS-0	0.949	0.604	0.463	0.586	0.761	$CMB\kappa$	0.168	0.170	0.432	0.943
KiDS-1		0.795	0.292	0.877	0.336	DES γ -0	0.436	0.232	0.630	0.774
KiDS-2	-	8 -1 0	0.603	0.044	0.006	DES γ -1	_	0.545	0.991	0.645
KiDS-3	-	-		0.977	0.406	DES γ -2	_		0.813	0.245
KiDS-4	-	—			0.612	DES γ -3	-	1000		0.977

Growth reconstruction: Λ CDM constraints

Results:

- ACDM is an excellent fit to the low-z data
- North and South data compatible
- 3.5σ tension with Planck on S₈
- Driven by cosmic shear data

Hybrid EFT bias expansion

- Implementation based on <u>ABACUS simulation</u>.
 - Smooth transition between LPT and sims.

Hybrid EFT bias expansion

$$P_{\alpha\beta}(k;\vec{\theta}) = P_{\alpha\beta}(k;\vec{\theta}_*) + (\vec{\theta} - \vec{\theta}_*) \cdot \nabla_{\theta} P_{\alpha\beta}(k)$$

$$P_{\alpha\beta}(k;\vec{\theta}) = \frac{P_{mm}^{\rm HF}(k;\vec{\theta})}{P_{11}^{\rm AB}(k;\vec{\theta})} P_{\alpha\beta}^{\rm AB}(k;\vec{\theta})$$

- Smooth transition between LPT and sims.
- Cosmological dependence of ratio wrt.
 P_{mm}(k) through linear derivatives

Hybrid EFT bias expansion

$$P_{\alpha\beta}(k;\vec{\theta}) = P_{\alpha\beta}(k;\vec{\theta}_*) + (\vec{\theta} - \vec{\theta}_*) \cdot \nabla_{\theta} P_{\alpha\beta}(k)$$

$$P_{\alpha\beta}(k;\vec{\theta}) = \frac{P_{mm}^{\rm HF}(k;\vec{\theta})}{P_{11}^{\rm AB}(k;\vec{\theta})} P_{\alpha\beta}^{\rm AB}(k;\vec{\theta})$$

- Smooth transition between LPT and sims.
- Cosmological dependence of ratio wrt.
 P_{mm}(k) through linear derivatives

Performance on real data

Markedly improved performance in goodness of fit on high-k

_

Performance on real data

- Markedly improved performance in goodness of fit on high-k
- 35% better Ω_m 10% better S₈ Potential gains in H₀