

Synergy between optical, SZ, and X-ray: Lessons learned from DES Cluster Cosmology

Tesla Jeltema

Santa Cruz Institute for Particle Physics University of California, Santa Cruz

DARK ENERGY SURVEY

Evolution of cluster mass function sensitive to both growth of structure and geometry of the universe

- "The CL technique has the statistical potential to exceed the BAO and SN techniques but at present has the largest systematic errors."
- DETF Final Report
 - → We need to combine multiwavelength observations

DES Forecasts

DES proposal 2006

Where are we? - DES Clusters

5000 deg² footprint has been covered for 900 secs in griz and 450 sec in Y

Status:

- Y1 (1300 sq. deg, 40% depth) key results published
- ~ 7,000 clusters
- Y3 (4000 sq. deg, 50% depth) papers in progress
- ~ 21,000 clusters
- Y6 (full survey)Y6 Gold v2 complete

Cosmology with Clusters

What we can predict: (# of massive halos)/volume at z

What we see:

Galaxies in survey solid angle at photometric z

- 1. Identify clusters as overdensities of galaxies with the same color (
- 2. Color of red sequence gives z (accurate to ~1%)

- 3. Candidate central galaxy ightarrow position
- 4. Assign galaxies a membership probability

 $\lambda_{RM} = \Sigma p_{mem} \rightarrow richness$

Rykoff+ 2014, 2016

Mass-Richness Relation

- Mean mass-richness relation from stacked weak lensing
 - Amplitude uncertainty 5% in DES Y1 🙂
 - Systematics dominated oxtimes

 X-ray and SZ calibration of miscentering and richness scatter
Zhang+ 2019, Farahi+ 2019, Bleem+ 2020

> Tx – λ Chandra + XMM – for DES Y3 clusters

Observed vs. True Richness

- Projection effects change observed richness - Costanzi+ 2019
 - Uncertainty in background
 - Correlated structure
 - Masking (percolation)

→ Calibration with spectroscopy underway -Myles+ 2021, Wetzell+ 2021

Observed vs. True Richness

- Projection effects change observed richness - Costanzi+ 2019
 - Uncertainty in background
 - Correlated structure
 - Masking (percolation)
- Richness bias for miscentered clusters - Zhang+ 2019
- \rightarrow calibrate with X-ray and SZ

Selection Effects

Richness selection is biased compared to mass selection (e.g. for halos elongated along the line of sight or with correlated structure)

• Biases lensing determined mass

Wu et al. in prep., DES collaboration 2020

 DES clusters have similar constraining power to DES 3x2pt (g-g, g-s, s-s)

However,

- Selection effect uncertainties add 16% error on S₈
- Tension between number counts and lensing indicate unmodelled systematics for low richness clusters

> Implies lensing signal too low at $\lambda < 30$

(similar to massive galaxies in Leauthaud+2017)

1.0

0.8

0.6

0.4

0.2

0.0

20

30

45

60

richness

100

Contamination fraction

Using SZ Observations

proj

Grandis+

2021

200

DES Y1 NC +

stacked WL - N matched

 SPT MOR + DES number counts gives cosmology & consistent with previous studies

• SPTxDES implies a growing contamination fraction or richness scatter at low λ

1.0

0.8

0.6

0.4

0.2

0.0

20

30

45

60

richness

100

Contamination fraction

Using SZ Observations

DES Y1 NC +

stacked WL - N matched

Grandis+

2021

200

 SPT MOR + DES number counts gives cosmology & consistent with previous studies

→ Limiting factor is richness range of current SZ samples

Looking Ahead

CMB-S4: >75,000 clusters to high-z and lower masses

LSST: 4x area of DES + depth, several 100k clusters

Raghunathan+ 2021

X-ray: eROSITA 50-100k clusters + Athena pointed observations

- LSST/optical surveys provide cluster redshifts and lensing
- Powerful combination with CMB-S4 clusters and CMB lensing

X-ray probes to low mass at low-z and combined with CMB probes gastrophysics

