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Dark Complexity

Perhaps dark matter / dark sectors are not simple or minimal?
Instead of a single WIMP, could have variety of particles & forces.

Theoretical perspective:

The SM is complicated and O(10%) of DM by energy density.

Symmetries between SM and dark sector could solve fundamental
problems, e.g. Higgs hierarchy problem.

[see talk by Nathaniel Craig & Joel Meyers] [recent Twin Higgs Cosmo example: 1611.07975 (Chacko, Craig, Fox, Harnik)]

Profound consequences for cosmology and astrophysics.



What if the dark sector was more like the SM?

Consider simple model of “atomic dark matter”:

= darkK proton Mass mp,

- dark electron m,

- dark photon (QED force) with coupling strength o,
- makes up fraction f of total DM

- temperature during decoupling ¢ = T),/T,

Good benchmark for many more complicated possibilities.
“Dark nuclear physics™ optional (present e.g. in Twin Higgs)!



The Magic of the CMB

CMB S4 will measure presence of light degrees of freedom very model-
independently” with precision 6(AN, ;) ~ 0.03

413 4
, L 3 11 T A
aDM has irreducible signature AN, ~ )\ r ~ 4.4 ¢
Y

& naturally wants to be < |, but unless there are significant dilution mechanisms
at play, good chance for positive detection at CMB S$4.

Note that galaxy surveys can constrain & much more due to dark-acoustic
oscillations, but not if DM fraction f < ~ 5%!

1310.3278 Cyr-Racine, Putter, Raccanelli

The CMB S4 constraint is independent of DM-fraction: a generic probe of
“dark electromagnetism”.What could it mean!

Dark EM + DM — dissipative dynamics — profound change from ACDM

* modulo 2107.13000 Cyr-Racine, Ge, Knox
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Mirror Stars

Atomic DM can cool and collapse into mirror stars in our galaxy
- just like regular stars, but shine in dark light
- If no dark nuclear physics, cool in Kelvin-Helmholz time.
- If dark nuclear physics, could live & dark-shine much longer
- eventually produce relics (like white dwarfs, neutron stars, black holes)

Abundance hard to predict, but can look for them with microlensing
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Vera Rubin Observatory should be able to detect
sub-percent DM-fractions of dark stars in a dark disk*



Mirror Neutron Stars

Mirror neutron stars in the Twin Higgs: lighter than regular neutron stars,
but can be detected by Advanced LIGO with standard analysis techniques!
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Electromagnetic Mirror Star Signals

Could Mirror Stars emit regular photons that we would see in telescopes!?

Yes! Generally, dark QED photon will mix with SM photon:

SM photon
AVAVAVAV

Incredibly faint interactions are not relevant for galaxy/stellar
evolution, but can produce signals!



Electromagnetic Mirror Star Signals

SM baryons
(interstellar medium)

~Optical/IR: Thermal emission
' from captured SM matter

Captured N
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1909.04072 DC, Setford



Mirror Stars in GAIA

Thermal emissions of captured SM matter in mirror stars should live in
different region of HR diagram than regular stars (faint and hot).

GAIA constrains many possible mirror star scenarios, but still need to
connect mirror star properties to atomic-DM microphysics

Excess Flux Factor Cut + Mirror Region HR
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Stellar Cooling

Flip this around: if there is a photon portal, atomic Dark Matter will
accumulate in regular stars and provide an additional cooling
channel by dark photon emission

BBN CMB

White Dwarf cooling provides
strongest constraints on photon SN 1987A
portal in atomic DM models.

Disk

mp, =1 GeV
Plenty of room for future i /
detection, however.

: : . Papm/Pom =

Big fly in the ointment: unknown 10-3 . 10-2 . 10~

aDM distribution today!

~-14 1 ' 1 ' ,
107 10> 10% 103 102 10! 1

m. /| GeV
2010.00601 DC, Setford



Direct Detection of atomic DM

Complicated story for such a simple model.

Depends on DM-SM interaction of course, but also on the local density
and velocity distribution, i.e. distribution in the galaxy.

Novel effects can dramatically affect scattering rates at local experiments:
capture, evaporation, and dark-plasma screening!

These effects turn on
epe e exponentially as function of

incoming dark-positive

charges ,+ -
o P € aDM masses/parameters,
o & P so either don’t matter at all
+ dark charge €- o
DO, g or completely dominate
part:al{y canceled ’ .
e e e~  P* behavior.
e

Accellerate e’ and hence

increase their direct detection signal, P"" 2104.02074 Chacko, DC, GeIIer,Tsai

unless collisional shielded



Direct Detection

Twin Higgs with photon portal. Consider benchmark halo or disk distributions.

Electron-Recoil Direct Detection experiments will be able to
probe tiny kinetic mixings ¢ ~ 10™!* in %-fraction aDM halo.
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Distribution of atomic DM

The most difficult question. 105 |

[| Twin H oscillatio
1.00+

0 5L|803.O3263
[ Chacko, DC, Geller, Tsai

At large scales we can understand the linear
effects of aDM, like dark baryo-acoustic P
oscillations, constrained by galaxy surveys. O s

1310.3278 Cyr-Racine, Putter, Raccanelli Keq Krec Og  non-linear
'0.001 0.005 0.010 0.050 0.100 0.500
k (hMpc~1)

AN, =0.1

7-level effects will be detected by future surveys.

At smallest scales we can understand what kinds of phenomena will occur
(mirror stars, capture, etc) but everything has a free unknown parameter:
the present-day aDM distribution in our galaxy!

Can we ever predict aDM distribution from first principles!?
Vital to connect astrophysical observations/bounds to
parameters of BSM model.



alactic Structure

1712.04779 Ghalsasi, McQuinn

_, Molecular excluded region mx =1GeV

If we could predict aDM distribution in our galaxy, we
could apply galaxy rotation curves, microlensing bounds,

dwarf galaxy observations, to constrain aDM parameter =
space. (+ everything discussed on prev slides) %
So far, cutting edge is application of semi-analytical =

methods for galactic structure formation.
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Need to be able to run full MHD
N-body simulations with Overview of Simulation ADM Cooling

(i) Collisional Excitation: from Katz et al. (1996) (incorporat-
° ing earlier fits from Cen 1992):
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(v) High-Temperature Metal-Line Cooling: this refers to
metal-line cooling processes in mostly ionized gas, with temper-
atures > 10°K. We use the public look-up tables from Wiersma
et al. (2009a), for which:
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(iv) Free-free emission: from Rybicki & Lightman (1986): o N R
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(B22) (xiii) Opti ~Thick Cooling: lacking a full radiative trans-
fer

(vii) Dust Collisional Heating/Cooling: from Meijerink &
Spaans (2005):

(viii) Compton Heating/Cooling: from the CMB, gives (Ry- Apu =112 1072 (T Tau) T x (B19)

Currently extending GIZMO (e ) )
to add aDM capability. (1702.06148) aDM generalizations: 1705.10341 Rosenberg, Fan

[in progress] Sandip Roy, Xuejian Shen, Jack Setford, Mariangela Lisanti, Norman Murray, Philip Hopkins, DC



Conclusions

The CMB-54 AN, measurement is a gate-keeper of rich dark dynamics.

If there is a signal, then all these possibilities become very real.
- Need to understand complicated dark dynamics on many scales
- Plethora of astrophysical signals:
optical, X-ray, gravitational waves, microlensing, large-scale structure, direct
detection & local dark plasma effects, galactic structure, ...

What it CMB-54 finds nothing!?

If DM fraction interacting with DR is <~ 5% and 7)/7, < 0.3, AN, and other

cosmological bounds could be evaded in minimal aDM models
— important to look for these direct astrophysical signals!

... but many complete and very motivated theories like the Mirror Twin Higgs
have extra light dof and would be severely constrained or excluded.

Question:Vhat would it take, hypothetically, to improve AN, precision even



