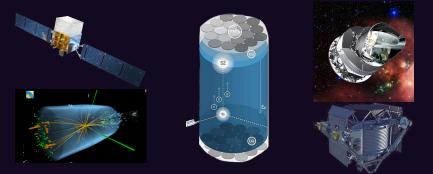
Cosmological Constraints on Light (but Massive) Relics

CMB-S4 Summer 2021 Meeting

W. Linda Xu

with Nick Deporzio, Julian Muñoz, & Cora Dvorkin [2006.09395, 2006.09380 & 2107.09664]


Harvard University \rightarrow UC Berkeley/LBNL

W. Linda Xu

Cosmological Constraints on Light (but Massive) Relic:

- "Light" : Visible, ordinary particle content $\sim 15\%$
- "Dark" : Invisible, feebly-interacting particle content $\sim 85\%$
 - Most of it needs to be mostly cold and collisionless

- "Light" : Visible, ordinary particle content $\sim 15\%$
- "Dark" : Invisible, feebly-interacting particle content $\sim 85\%$
 - Most of it needs to be mostly cold and collisionless

- "Light" : Visible, ordinary particle content $\sim 15\%$
- "Dark" : Invisible, feebly-interacting particle content $\sim 85\%$
 - Most of it needs to be mostly cold and collisionless
 - Some fraction can be not that

- "Light" : Visible, ordinary particle content $\sim 15\%$
- $\blacktriangleright\,$ "Dark" : Invisible, feebly-interacting particle content $\sim 85\%$
 - Most of it needs to be mostly cold and collisionless
 - Some fraction can be not that
 - Neutrinos definitely exist, other light relics might too
 - We stand a chance to detect them

Light but Massive Relics

Particles that were in thermal contact with SM at early universe, were relativistic at decoupling, but behaves like matter today.

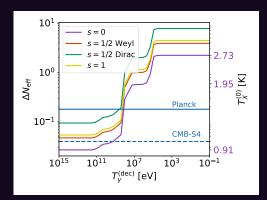
Light but Massive Relics (LiMRs)

Particles that were in thermal contact with SM at early universe, were relativistic at decoupling, but behaves like matter today.

Light but Massive Relics

\blacktriangleright Mass m_X

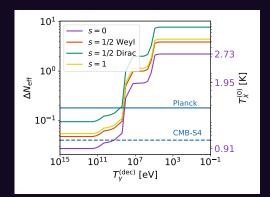
- (present-day) Temperature $T_X^{(0)}$
- \blacktriangleright Thermalized dofs g_X



 $g^{(dec)}_{*S} \propto (T^0_X)^{-3}$

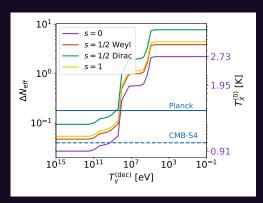
[Deporzio, WLX, Műnoz, Dvorkin 2006.09380]

$$g_{*S}^{(dec)} \propto (T_X^0)^{-3}$$


Minimal extensions $\implies T_X^0 \ge 0.91$ K.

[Deporzio, WLX, Műnoz, Dvorkin 2006.09380]

W. Linda Xu

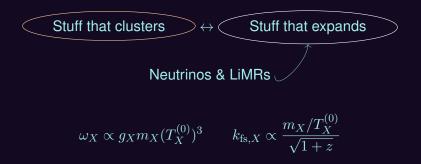

Cosmological Constraints on Light (but Massive) Relics

 $\Delta N_{\rm eff} \propto g_X (T_X^0)^4$

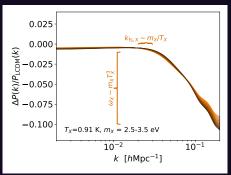
[Deporzio, WLX, Műnoz, Dvorkin 2006.09380]

 $\Delta N_{\rm eff} \propto g_X (T_X^0)^4$

 $\begin{array}{l} \text{Planck } \Delta N_{\text{eff}} \leq 0.36 \implies T_{\text{Weyl}}^{0} \leq 1.5 \text{ K} \\ \text{CMB-S4 } \Delta N_{\text{eff}} \leq 0.06 \implies T_{\text{Weyl}}^{0} \leq 0.96 \text{ K} \\ \text{[Deporzio, WLX, Műnoz, Dvorkin 2006.09380]} \end{array}$


W. Linda Xu

Cosmological Constraints on Light (but Massive) Relics



 $\omega_X \propto g_X m_X (T_X^{(0)})^3$

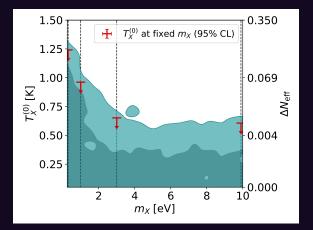
[WLX, Műnoz, Dvorkin 2107.09664]

Data/Experiments

Markov Chain Monte Carlo

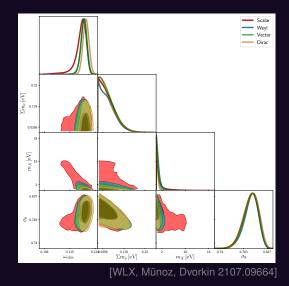
$$\{\omega_b, \omega_{cdm}, h, n_s, A_s, \tau, \sum m_{\nu}\} + \{m_X, T_X^{(0)}\}\$$

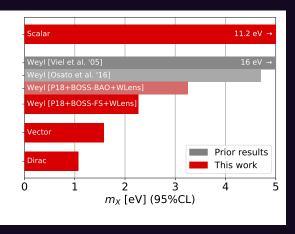
{Scalar, Weyl, Vector, Dirac}


- Planck 2018 TT+TE+EE +Lensing
- CFHTLens
- BOSS DR 12 (CLASS-PT)

[Chudaykin, Ivanov, Philcox, Simonović, 2004.10607]

So, are there LiMRs in our universe?


So, are there LiMRs in our universe?



[WLX, Műnoz, Dvorkin 2107.09664]

Cosmological Constraints on Light (but Massive) Relics

$$T_X = 0.91 \text{ K}$$

 $m_X (95\% \text{ CL})$
Scalar 11.2 eV
Weyl 2.26 eV
Vector 1.58 eV
Dirac 1.06 eV

[WLX, Mũnoz, Dvorkin 2107.09664]

Results & what we can learn from it

Light gravitinos in gauge-mediated SUSY breaking

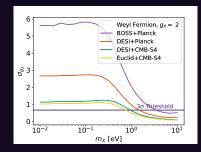
$$m_X = \frac{\Lambda^2}{\sqrt{3}M_{pl}}, \quad T_X = 0.91 \text{ K}, \quad g_{X,\text{eff}} = 2$$
 $m_X < 2.26 \text{ eV} \implies \Lambda < 69.1 \text{ TeV}$

 \sim

10/13

Results & where we've landed

Dark sectors are worth studying, in whole or in part


- There are reasons to care about LiMRs
- If so, cosmological data is uniquely powerful
- The first set of comprehensive constraints

Results & where we're going next

Better data coming soon!


 $T_X = 0.91 \text{ K}$

<i>m_X</i> (95% CL)		
	BOSS + Planck	DESI + S4
Scalar	11.2 eV	0.94 eV
Weyl	2.26 eV	0.58 eV
Vector	1.58 eV	—
Dirac	1.06 eV	_

[Deporzio, WLX, Mũnoz, Dvorkin 2006.09380]

Thank you!

[Estella Lin, 202] osmological Constraints on Light (but Massive) Relics

13/13

W. Linda Xu