

HARVARD & SMITHSONIAN

Combining CMB Observations with Extinction Data to Create a 3D Dust Temperature Map

CMB-S4 Summer Collaboration Meeting

Ioana Zelko, Douglas P. Finkbeiner, et al, Harvard University

Outline

Combining CMB Observations with Extinction Data:

- Create a 3D Dust Temperature Map
- Test and explain correlation between emission and extinction properties

Uses for a 3-D dust temperature map:

If we know where the stars are, we could estimate the radiation field

As a probe to study dust properties

For foreground removal

Reconstruct polarized Planck maps using a B-field model, radiation field.

We have already: 3D Dust Reddening Map

Green, Zucker, Speagel, Schlafly (Green et al., 2019) have created a 3D maps of dust reddening

My goal: make a 3D Dust Temperature map

Credit: Greg Green, http://argonaut.skymaps.info/

Planck 217, 353, 545, 857GHz and SFD 3000 GHz.

Extra: Testing the variance of ρ across the sky. ρ is the conversion factor used in SFD to move between extinction and emission maps.

Bayestar gives us the reddening at 120 distance bins

Calculating emission for a pixel within a "superpixel"

$$au_{353}^{n,k}=
ho_{353}^n\Delta E_{
m B-V}^{n,k}$$

At each distance slice *n*, we model dust emission as a single modified black body:

$$egin{aligned} \Delta I_
u^{ ext{voxel }n,\,k} &= au_{353}^{n,k}ig(rac{
u}{
u_0}ig)^{eta^n}B_
u(T^n)\ I_
u^{ ext{total}\,,k} &= O_
u + \sum_n \Delta I_
u^{ ext{voxel}\,\,n,\,k} \checkmark \end{aligned}$$

NSIDE 1024 pixels, indexed by *k*

NSIDE 64 "superpixel"

Model Analysis for Each Superpixel $p(\theta|D) = rac{p(D|\theta)p(\theta)}{p(D)}$

Our data are:

$$\{I^{\mathrm{D},k}_{
u}\},\{\sigma^{\mathrm{D}}_{
u}\},\{\Delta E^{k,n}_{\mathrm{B-V}}\}$$

The model parameters are:

$$\{\rho_{353}^n\}, \{\beta^n\}, \{T^n\}, \{O_\nu\}$$

500x500 pix 1.5 '/pix,

(0,20)

Planck dust emission 545GHz

15

Matching the "PSF"

Total Reconstructed Emission 545 GHz

5 H

Total Difference Emission 545 GHz (0,20) 15 0

1.5 '/pix, 500x500 pix

Variation of the p conversion factor

7[K] at distance slice 0 at 0.20 kpc

7[K] at distance slice 3 at 0.79 kpc

7[K] at distance slice 4 at 1.26 kpc die als 10 25

7[K] at distance slice 5 at 2.00 kpc

Calculating the Temperature of a Dust Cloud with Two Components

Credit: Zucker 2019

Credit: Zucker 2019

Reddening for a Cepheus cloud line of sight of nside 128

0.5× 0.5° resolution (NSIDE 128)

1× 1° resolution (NSIDE 64)

2× 2° resolution (NSIDE 32)

Successfully reconstructed the 2D emission maps from the 3D reddening maps

Created Proof-of-concept 3D dust temperature map

Tested the variation of the ρ conversion factor

3D Temperature of the Cepheus cloud

CENTER FOR ASTROPHYSICS

HARVARD & SMITHSONIAN

The Correlation between Dust Extinction and Emissivity (Rv - β) parameters

Schlafly et al 2016 observed a correlation between R_v and β , but it is not theoretically explained.

Schlafly2016

HARVARD & SMITHSONIAN

Zelko & Finkbeiner 2020

ApJ 904, 38

Thank you!

Future Directions

3D Dust Temperature Maps:

Next Generation Reddening Maps that have higher resolution,

combined with

Improved Multi-frequency Emission Data: CMB-S4, PIXIE The Correlation between Dust Extinction and Emissivity ($Rv - \beta$) parameters:

For polarization:

This work had assumed grains are spherical. Analysis can be redone for spheroids/ellipsoids.

Ex: B. T. Draine and Brandon S. Hensley 2021 ApJ 910 47

Testing the correlation in 3D

Thinking of new dust emission model fit

