First Upper Limits from HERA on the 21 cm Power Spectrum

Josh Dillon UC Berkeley Overdensity of Hydrogen

$\delta T_{21\,\mathrm{cm}} \propto (1+\delta)$

21 cm Brightness Temperature

Alvarez, Kaehler, Abel

Neutral

Fraction

 x_{HI}

 $T_{\rm CMB}$

 T_s

Spin

Temperature

The first generation of telescopes got us started on measuring the 21 cm power spectrum.

AND BETTY

GORDON

FOUNDATIO

So how does HERA measure the 21 cm power spectrum?

Step 1: Calibration

The key problem in 21 cm cosmology is maintaining the separability of signal and foregrounds.

Synchrotron Foregrounds

Intensity

21cm Signal

4 - 5 orders of magnitude

Individual antenna response must be precisely calibrated. $V_{ij}^{obs}(\nu) = g_i(\nu)g_j^*(\nu)V_{ij}^{true}(\nu)$

Baseline

HERA was designed to be calibrated using the internal consistency of redundant baselines.

$V_{ij}^{\text{obs}}(\nu) = g_i(\nu)g_j^*(\nu)V_{ij}^{\text{true}}(\nu)$

All without an explicit sky or instrument model!

Liu et al. (2010)

Example raw HERA data for a single redundant baseline:

Imposing the redundancy constraint helps solve for all gains.

Step 2: Reflection and Cross-Talk Systematics

And as soon as we Fourier transform our data, we run into a problem: high delay (k₁) systematics on every baseline!

12

14

Kern, Parsons, Dillon, et al. (2019ab)

To understand this effect, we have to examine the temporal structure of the foregrounds and the systematics—how fast they "fringe."

Kern, Parsons, **Dillon**, et al. (2019ab)

With our techniques for relatively lossless systematics removal, we're getting very close to the thermal noise limit.

HERA Collaboration (2021)

Step 3: Power Spectrum and Error Estimation

Working outside the foreground-dominated region, we get our power spectrum upper limit.

HERA Collaboration (2021)

Our first (and world-leading!) limit with just 18 nights and a very conservative analysis.

HERA Collaboration (2021)

Step 4: Validation with End-to-End Simulations

We simulated the most important real-world effects to test how well we could nitigate them. $Re(\widetilde{V}) \, \left[\mathrm{Jy} \; \mathrm{Hz}
ight]$

Aguirre et al. (2021)

The simulation is really starting to reflect the complexity of real data.

We're able to extract a simulated signal and quantify our biases, which raise our limits by ~10%.

Aguirre et al. (2021)

Step 5: Astrophysical and Cosmological Interpretation

We can already largely rule out an IGM unheated by X-rays at z = 7.9, though this is not at all surprising.

HERA Collaboration (in prep.)

HERA Collaboration (in prep.)

What's next?

~12 good nights from our commissioning run of HERA Phase 2 with the new wideband feeds.

94 nights from HERA Phase 1 spanning nearly 24 hours in LST.

We'll have way more sensitivity with a full season (~100 nights) and the full array, and should easily rule EDGES in or out.

Which means we can precisely measure the ionization history of the universe.

We'll eliminate **T** as a CMB nuisance parameter, improving A_s errors by a factor of **4**.

Liu et al. (2016)

And, maybe increase the significance of a detection of non-zero Σm_v with CMB-S4.

Liu et al. (2016)

In Summary...

