arXiv:2103.13334

B-mode constraint from SPIDER's first flight with SMICA: a spectral based component separation pipeline

Corwin Shiu on behalf of the SPIDER Collaboration 2021 Aug 13 CMB S4 Workshop

Intro to SPIDER

- Balloon-borne CMB polarimeter with the goal of measuring *r*
- 6 telescopes (3 at 95 and 3 at 150 GHz) with 2400 antenna-coupled TESs
- Half-degree beams
- Flew for 16 days above Antarctica in January 2015, with 12 LST days scientific data.
- 4.8% of the sky used in first analysis
- A second flight with 280 GHz detectors...(someday)

Intensity Maps

*reobservation: Using SPIDER scan strategy and filtering to observe planck maps

The comparison between re-observed planck map and raw planck map illustrates the impact of SPIDER'S scan strategy and filtering that suppresses power at large angular scales

Polarization Maps

The dominant E-mode pattern of the cosmological signature is evident in the maps, and is diluted by the Galactic signal.

There are more structure in the 150GHz maps. (evidence of foreground power)

High level Analysis Outline

Foreground Cleaning methods

Template removal methods: XFaster and NSI

Construct foreground templates from Planck maps (353-100 or 217-100)

Minimize CMB power by fitting a scale parameter α .

Template removal methods: XFaster and NSI

SMICA for SPIDER

Data covariance $\,\hat{R}_b\,$

- (2N x 2N) matrix where N = number of maps.
- Consisting of all auto and cross spectra
- Computed with PolSpice

Model Equation
$$ilde{R}_b(heta) = ilde{N}_b + \sum_{b'} J_{b,b'} \begin{bmatrix} f_{b'} P_{b'} f_{b'}^T + C_{b'} \end{bmatrix}_{ ext{Noise}}$$

Likelihood (Kullback-Leibler divergence)

$$egin{aligned} -2\log L &= \sum_b w_b Tr\left[\hat{R}_b ilde{R}_b^{-1}(heta) - \lnig(\hat{R}_b ilde{R}_b^{-1}(heta)ig)
ight] \ w_b &= \sum_{\ell \in b} (2\ell+1) f_{sky} \end{aligned}$$

SMICA for SPIDER

Pared down example EE only (95, 150, 353)

 \hat{R}_b Auto and cross spectra of inputs: spider (95, 150), planck 353

SMICA for SPIDER

Pared down example EE only (95, 150, 353)

 \hat{R}_b Auto and cross spectra of inputs: spider (95, 150), planck 353 $ilde{R}_b(heta)$ Model fitted

Components are partitioned by spectral shape

$$W_\ell = (A^T R_\ell^{-1} A)^{-1} R_\ell^{-1} A$$

R*i* = Model of the spectral covarianceA = spectral scaling of the desired component

The weights applied to each <u>map</u> to construct a component cleaned map

SMICA component cleaned map

Raw SPIDER map

$$W_\ell = (A^T R_\ell^{-1} A)^{-1} R_\ell^{-1} A$$

Planck 217 appear to have the largest contribution (over 353) but remember that *weights act on alms* and Planck 353 has 4-5x more dust power

CMB must be cleaned from the foreground map so SPIDER 90 / Planck 100 have negative weights

SMICA component map

Reobserved Planck 353-100 map

SMICA component map

Reobserved Planck 217-100 map

SMICA component map

Summary

Spider had a successful first flight! B-mode results out now. r < 0.19 (95% Bayesian) or r < 0.11 (95% frequentist) More to come. Second flight in 2019, 2020, 2021, ... first chance we get

Taurus coming ~2026. E-modes over 70% of sky 150 to 350 GHz

Thank You!

All

Extra Slides

The payload - a brief introduction

Credit: Steve Benton

Credit: **Steve Benton**

Low-level Data Processing: From TOD to map

Template Removal

We use the template removal method with both the NSI and XFaster pipelines

Dust is big

Results are highly consistent between NSI and XFaster, especially in the "nominal" 353-100 case

	$10^3 \alpha_{95}$	$10^3 lpha_{150}$	$eta_{ m d}^{95}$	$eta_{ m d}^{150}$
Template: $\nu_0 = 353 \text{GHz}$				
Planck	16.8 ± 0.5	44.4 ± 0.8	1.53 ± 0.02	
XFaster	18 ± 2	45 ± 2	$1.49 \substack{+0.07 \\ -0.09}$	1.52 ± 0.05
NSI	19 ± 5	45 ± 4	$1.44^{+0.22}_{-0.17}$	1.51 ± 0.10
Template: $\nu_0 = 217 \text{GHz}$				
Planck	153 ± 3	404 ± 4	1.53 ± 0.02	
XFaster	159 ± 17	377 ± 16	$1.51 \substack{+0.10\\-0.12}$	$1.68 {}^{+0.08}_{-0.09}$
NSI	140 ± 50	350 ± 58	$1.63^{+0.46}_{-0.31}$	$1.81 {}^{+0.38}_{-0.31}$

Likelihood contours for r = 0

Statistical consistency of XFaster and SMICA

 Both XFaster and SMICA give <u>unbiased estimates</u> of *r* and are similarly optimal estimators

SMICA r

Statistical consistency of XFaster and SMICA

- Both XFaster and SMICA give <u>unbiased estimates</u> of *r* and are similarly optimal estimators
- When run on as identical simulation inputs, the estimators have substantial scatter
 - Different estimators project noise differently

Likelihood contours for r = 0

Statistical consistency of XFaster and SMICA

- Both XFaster and SMICA give <u>unbiased estimates</u> of *r* and are similarly optimal estimators
- When run on as identical simulation inputs, the estimators have substantial scatter
 - Different estimators project noise differently
- Put another way,

$$\sigma(\Delta r) \gg ext{Bias}$$

Statistical consistency of XFaster and SMICA

- The XFaster result is consistent with sims with input r = 0
- At first glance XFaster and SMICA have very different results
 - Half the differences are due to data inputs
 - Other half is due to different estimators
- The data result is statistically consistent between the two pipelines

Backup Slides: SMICA Validation on Sims

XFaster Estimator (Gambrel+ 2021 arxiv:2104.01172)

https://annegambrel.github.io/xfaster/

Hybrid: quadratic and Monte Carlo pseudo-C_r

Flexible: solve for bandpower deviations *or* solve for parameterized power spectrum model. Filter transfer function, foregrounds, etc

Marginalizes over nuisance parameters: noise model residuals, beam model uncertainty

