Taurus

A Balloon-borne Polarimeter for Cosmic Reionization and Galactic Dust

Steven Benton
Princeton University
Aug 13, 2021
Taurus

- CMB E-Mode polarization
- Mid-latitude balloon (2026)
 - Up to 50 days

- High Frequencies
 - 4 bands: 150 – 350 GHz

- Large Scales
 - 70% of the sky
 - Simple Refractive Optics
 - Degree Resolution

- Recently Funded! (NASA APRA)
Big Bang

??? Inflation ???

Particles Form

Photons + matter coupled

Recombination

Dark Ages

First Stars and Galaxies
Nuclear fusion (again)
Chemistry

Geology
Biology

Anthropology, etc

Today

Reionization, Neutrinos

“Initial” fluctuations:
- A_s amplitude
- n_s scale-dependence

Kinds of stuff:
- $\Omega_b h^2$ baryons
- $\Omega_c h^2$ dark matter
- Ω_Λ dark energy
- Σm_ν neutrino mass

Reionization:
- τ optical depth
CMB E-modes and Reionization (Tau’R’Us)
CMB E-modes and Reionization and Neutrinos

With CMB-S4:

![Graph showing CMB E-modes and Neutrino contributions.](image)
Why on a balloon? The atmosphere

![Graph showing optical loading vs frequency for different altitudes and ground conditions.](image-url)
Conventional Balloon vs. Super Pressure

Conventional: zero pressure, constant daylight, diurnal He loss
Super Pressure: pressurized, day/NIGHT cycles, fixed He quantity
Taurus Bands

![Graph showing optical loading and band normalization against frequency.

<table>
<thead>
<tr>
<th>Band Center (GHz)</th>
<th>Bandwidth (GHz)</th>
<th>Beam FWHM (arcmin)</th>
<th>Number of Detectors</th>
<th>Absorbed Power (pW)</th>
<th>Detector Sensitivity ($\mu K_{\text{CMB}} \sqrt{S}$)</th>
<th>Instrument Sensitivity ($\mu K_{\text{CMB}} \sqrt{S}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>40</td>
<td>60</td>
<td>3024</td>
<td>0.9</td>
<td>76</td>
<td>1.5</td>
</tr>
<tr>
<td>220</td>
<td>55</td>
<td>40</td>
<td>3024</td>
<td>1.1</td>
<td>123</td>
<td>2.4</td>
</tr>
<tr>
<td>280</td>
<td>70</td>
<td>60</td>
<td>2016</td>
<td>1.4</td>
<td>220</td>
<td>5.4</td>
</tr>
<tr>
<td>350</td>
<td>85</td>
<td>50</td>
<td>2016</td>
<td>1.6</td>
<td>550</td>
<td>13.4</td>
</tr>
</tbody>
</table>
Taurus Detectors (NIST)

- ~10k 100 mK TESes. Dichroic 150/220 and 280/350 GHz
- Corrugated feed horns, stacked silicon wafers
- Time-domain multiplexed readout
Taurus Sky Coverage: 70%
High Frequencies: Separating Dust
Projected Limits

Sigma (Tau) vs. Minimum ℓ

- 7 Days
- 30 Days

30 uK$^{-1}$, 0.55 (0.41) sky
14 uK$^{-1}$, 0.55 (0.41) sky
1 uK$^{-1}$, full sky, 10' beam
Planck 2018 error
Thank you! (and Taurus people)

Steven Benton (PI) Princeton
Bill Jones
Aurelien Fraisse

Jeff Filippini UIUC

Hannes Hubmayr NIST
Jake Connors
and more

Johanna Nagy WUSTL

Jon Gudmundsson Stockholm

Barth Netterfield Toronto
StarSpec Tech.

Sasha Rahlin FNAL
Extra Slides (hindsight)
Scan-Synchronous Noise Mitigation

... also more sky rotation and better scan strategy
Stratospheric Balloons

- Balloon at Launch
 - 25.2m (83 ft)
- Balloon Characteristics:
 - 1.12 \times 10^4 \text{ meters}^2
 - 89.50 \times 10^6 \text{ meters}^2
 - 20.32 \text{ microns}
 - 32.20 \text{ kilometers}
 - 40.20 \text{ kilometers}
 - 3,175 \text{ kilograms}
- Washington Monument
 - 197m (646 ft)
 - 169.3m tall (555.4 ft)
- Furling Parachute
 - 261m (856 ft)
- Ladder
 - 61m (200 ft)
 - Payload
 - 3m (10 ft)
- Max. Payload Weight
 - 8,000 pounds

- Balloon Volume
 - 39.57 \times 10^6 \text{ feet}^3
- Balloon Surface Area
 - 22.19 \text{ acres}
- Skin Thickness
 - 0.8 \text{ mil}
- Length of Seams
 - 21.6 miles
- Nominal Altitude
 - 132,000 feet
- Max. Payload Weight
 - 8,000 pounds