Taurus

A Balloon-borne Polarimeter for Cosmic Reionization and Galactic Dust

Steven Benton Princeton University Aug 13, 2021

Taurus

- CMB E-Mode polarization
- Mid-latitude balloon (2026)
 - Up to 50 days
- High Frequencies
 - 4 bands: 150 350 GHz
- Large Scales
 - 70% of the sky
 - Simple Refractive Optics
 - Degree Resolution
- Recently Funded! (NASA APRA)

Big Bang ??? Inflation ???

Reionization, Neutrinos

Particles Form

Photons + matter coupled

Recombination

Dark Ages

First Stars and Galaxies

Nuclear fusion (again)

Chemistry

Geology Biology

Anthropology, etc **Today**

"Initial" fluctuations:

• **A** amplitude

n

scale-dependence

Kinds of stuff:

• $\Omega_{f b}^2$

 $\mathbf{\Omega}_{\mathbf{c}}^{\mathbf{b}}$ h²

 \bullet Ω_{Λ}

• ∑m

baryons

dark matter

dark energy

neutrino mass

Reionization:

optical depth

CMB E-modes and Reionization (Tau'R'Us)

CMB E-modes and Reionization and Neutrinos

Why on a balloon? The atmosphere

Taurus Bands

Band		Beam	Number	Absorbed	Detector	Instrument
Center	Bandwidth	FWHM	of	Power	Sensitivity	Sensitivity
(GHz)	(GHz)	(arcmin)	Detectors	(pW)	$(\mu K_{\text{CMB}} \sqrt{s})$	$(\mu K_{\text{cmb}} \sqrt{s})$
150	40	60	3024	0.9	76	1.5
220	55	40	3024	1.1	123	2.4
280	70	60	2016	1.4	220	5.4
350	85	50	2016	1.6	550	13.4

Taurus Detectors (NIST)

- ~10k 100 mK TESes. Dichroic 150/220 and 280/350 GHz
- Corrugated feed horns, stacked silicon wafers
- Time-domain multiplexed readout

Taurus Optics

Taurus Sky Coverage: 70%

High Frequencies: Separating Dust

Projected Limits

Thank you! (and Taurus people)

Steven Benton (PI) Bill Jones Aurelien Fraisse Princeton

Jeff Filippini

UIUC

Hannes Hubmayr
Jake Connors
and more

NIST

Johanna Nagy

WUSTL

Jon Gudmundsson

Stockholm

Barth Netterfield StarSpec Tech.

Toronto

Sasha Rahlin

FNAL

Scan-Synchronous Noise Mitigation Q Simulation - Offset Pointing Q Simulation - Co-Pointed Declination -15° -30° +80°+40° 0° -20° +80°+40° 0° -20° -40° +120° +120°

Right Ascension

Right Ascension

... also more sky rotation and better scan strategy

Stratospheric Balloons

