Mandelli

Scientific framework

Systematic effects

Reliable simulation of the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives

Simulating and Mitigating the Atmospheric Effects for CMB ground-based Observations

Stefano Mandelli¹, Ricardo T. Génova-Santos²

¹Università degli Studi di Milano - Istituto Nazionale di Fisica Nucleare ²Universidad de La Laguna - Instituto de Astrofísica de Canarias

13 - Aug - 2021

CMB-S4 Summer Meeting

Presentation overview

CMB-S4 Summer Meeting

Mandelli

- Scientific framework Systematic effects
- Reliable simulation o the atmospheric contribution
- Mitigation Tecniques
- Conclusions and future perspetives

1 Scientific framework

- 2 Systematic effects
- 3 Reliable simulation of the atmospheric contribution
- 4 Mitigation Tecniques
- 5 Conclusions and future perspetives

Introduction

CMB-S4 Summer Meeting

Mandelli

Scientific framework

Systematic effects

Reliable simulation of the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives

CMB observation approaches

- Satellite mission
- Balloon-Based telescope
- Ground-Based telescope

Analysis approach

- The B-modes detection: limited by the control of the systematic effects
 - Requires to use a sinergistic approach between all of these philosophies
- The systematic contributions has to be **characterized** and **modelized** as better as we can.

Mandelli

Scientific framework

Systemation effects

Reliable simulation o the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives

Systematic Effects The atmosphere

The atmospheric spurious contribution

CMB-S4 Summer Meeting

Mandelli

Scientific framework

Systematic effects

Reliable simulation of the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives The atmospheric load represents the **main contribution** of noise for CMB ground-based telescope.

- We have considered the atmospheric emission unpolarized.
- The main contribution (if we exclude the O₂ Zeeman's emission) is due to the **instrumental leakage** from I to P channel.
- In this context, the atmospheric pattern that we can find in the I channel, is the same that is present in the P channel (with a rescale factor due to the leakage parameter, 1% for LSPE/Strip Q-band focalplane).
- I have studied the atmospheric effects in temperature, and I created an adaptive mapmaker to mitigate its fluctuations.

Mandelli

Scientific framework

Systematic effects

Reliable simulation o the atmospheric contribution

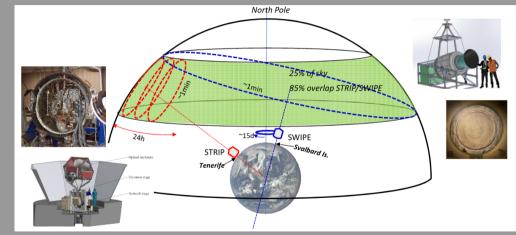
Mitigation Tecniques

Conclusions and future perspetives

LSPE Experiment

Mandelli (UNIMI - INFN)

CMB-S4 Summer Meeting


CMB-S4 Summer Meeting 6 / 25

The main features of the LSPE experiment¹

conclusions and future perspetives

¹10.1088/1475-7516/2021/08/008 JCAP

Mandelli (UNIMI - INFN)

CMB-S4 Summer Meeting

CMB-S4 Summer Meeting 7 / 25

Mandelli

Scientific framework

Systematic effects

Reliable simulation o the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives

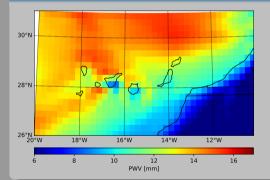
The Atmospheric Statistical Picture

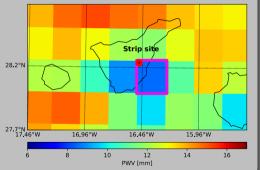
Collect the wheater history of the site

CMB-S4 Summer Meeting

Mandelli

Scientific framework


Systematic effects


Reliable simulation of the atmospheric contribution

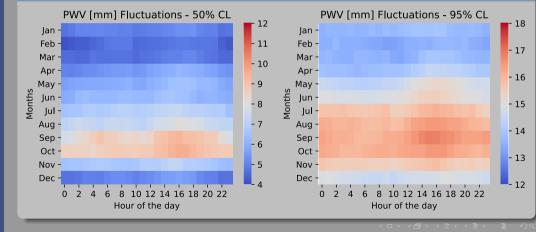
Mitigation Tecniques

Conclusions and future perspetives

ERA-5 graphical representation

Mandelli (UNIMI - INFN)

CMB-S4 Summer Meeting


CMB-S4 Summer Meeting 9 / 25

White noise seasonal fluctuations

CMB-S4 Summer Meeting

Mandelli

White noise

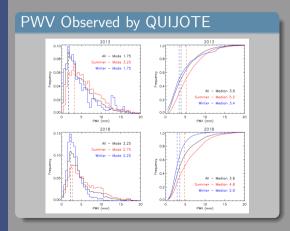
Mandelli (UNIMI - INFN)

CMB-S4 Summer Meeting

CMB-S4 Summer Meeting 10 / 25

The actual atmospheric quality from Teide Observatory

Mandelli


Scientific framework

Systemation effects

Reliable simulation of the atmospheric contribution

Mitigation Tecniques

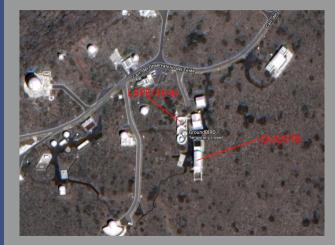
Conclusions and future perspetives

- Median PWV = 3.7mm
- During the good weather condiction (the 20% of the observations) the PWV was below 2mm.
- We have to find a way to correct/calibrate the ERA-5 data

Comparison with QUIJOTE MFI

CMB-S4 Summer Meeting

Mandelli

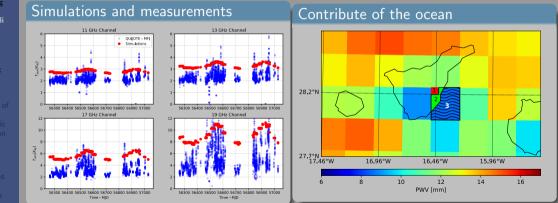

Scientific framework

Systematic effects

Reliable simulation of the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives


The QUIJOTE telescope is located at Observatorio del Teide (2400 m), near the LSPE/Strip site. We can share data about

- Instrumental systematics
- Atmospheric fluctuations.

The site location represent a great opportunity to approach a joint data analysis

Comparison with QUIJOTE MFI

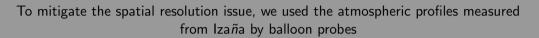
Mandelli (UNIMI - INFN)

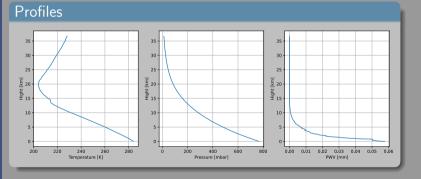
CMB-S4 Summer Meeting

Balloon measurements

CMB-S4 Summer Meeting

Mandelli


Scientific framework


Systematic effects

Reliable simulation of the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives

- Point like spatial resolution
- Poor temporal resolution
- Annual median profiles

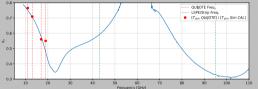
Pixel calibration

CMB-S4 Summer Meeting

Mandelli

Scientific framework

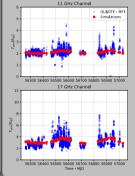
Systematic effects

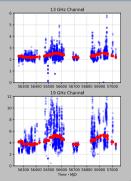

Reliable simulation o the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives

Using CAL^2 and AM we have estimated the contribute of the ocean.


Correction factor



- **Blue line:** represents k_{ν} evaluated with simulated T_{atm}
- **Red points:** k_{ν} out of QUIJOTE measurements and CAL simulation

²doi.org/10.5281/zenodo.4597960

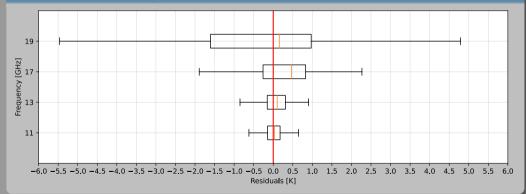
Comparison with the data

Simulations and data compatibility level

CMB-S4 Summer Meeting

Mandelli

Scientific framework


Systematic effects

Reliable simulation of the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives

The boxplots are compatible to zero within 1σ

Mandelli (UNIMI - INFN)

CMB-S4 Summer Meeting

Mandelli

Scientific framework

Systematic effects

Reliable simulation o the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives

The Atmospheric Statistical Picture Atmospheric correlations

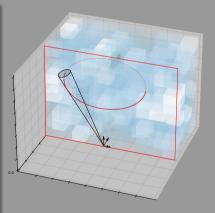
The atmospheric correlations

CMB-S4 Summer Meeting

Mandelli

Scientific framework

Systemation effects


Reliable simulation of the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives

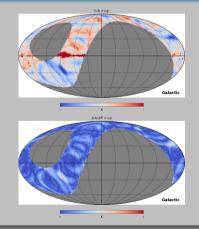
Kolmogorov Power Specturm

- The atm emission: is due by O_2 and H_2O
- The *O*₂ molecules are well mixed in the atmosphere
- The *H*₂*O* create turbulent structures (described by Kolmogorov)
- The features of this noise are difficult to characterized
 - The atmospheric condictions show different levels of fluctuations in time
 - These fluctuations are "convolved" with telescope scanning strategy

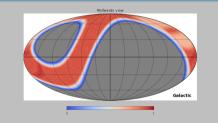
Binned maps

Mandelli

Scientific framework


Systemation of fects

Reliable simulation of the atmospheric contribution


Mitigation Tecniques

Conclusions and future perspetives

January

Hit map

The scan velocity is modulated as a function of the AZ angle

- Hit homogeneously distributed
- Increase the number of cross-links

Mandelli (UNIMI - INFN)

Mandelli

Scientific framework

Systematic effects

Reliable simulation o the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives

Mitigation Techniques

Mandelli (UNIMI - INFN)

CMB-S4 Summer Meeting

CMB-S4 Summer Meeting 20 / 25

Mitigation Techniques

CMB-S4 Summer Meeting

Mandelli

Scientific framework

Systematic effects

Reliable simulation of the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives

- Let's start from the well know MM equation $P^t N^{-2} Pm = P^t N^{-2} d$
- In the case of instrumental noise a good representation of the noise covariance matrix N^{-2} is represented by the noise model $n = \sigma^2 [1 + f_{knee}/f]^{\alpha}$, where the CX corr. are considered very small / negligible
- This is not true for atmospheric noise. The CX corr between detectors is dominant.

Noise model

We can complete the noise model with the atmospheric correlations

$$\circ n(f) = \sigma^2 [1 + f_{knee}/f]^{\alpha} + N(w) \exp\left[-\frac{f^2}{2*c(w)}\right]$$

where N(w) and c(w) depend on the weather parameters w, in particular PWV, T_s , P_s . The c(w) parameter depends on $1/L_0$. The parameters N(w) and c(w) are updated every hour.

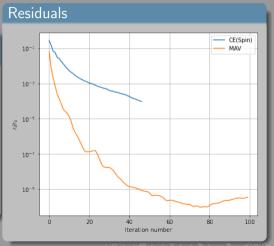
Mitigation Technique

CMB-S4 Summer Meeting

Mandelli

Scientific framework Systematic effects

Reliable simulation of the atmospheric contribution


Mitigation Tecniques

Conclusions and future perspetives

To improve the atmospheric mitigation we can modify...

- Scanning strategy
 - CES at different speed v(Az)
 - Elevation modulation

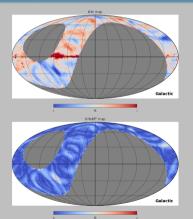
In this way, the hits on the map are more uniform ditributed. The increasing of the cross-links number improve the convergence speed-up of the conjugate gradient algorithm

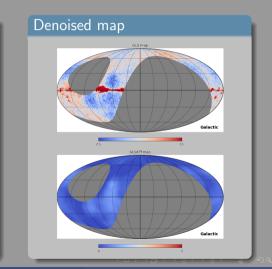
Denoised results

CMB-S4 Summer Meeting

Mandelli

Scientific framework


Systemation of fects


Reliable simulation of the atmospheric contribution

Mitigation Tecniques

Conclusion: and future perspetives

Mandelli (UNIMI - INFN)

CMB-S4 Summer Meeting

CMB-S4 Summer Meeting 23 / 25

Conclusion and future persepectives

CMB-S4 Summer Meeting

Mandelli

Scientific framework

Systematic effects

Reliable simulation of the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives

• Complete the mapmaker algorithm

- Now the code is slow, in particular the part fast fourier transform part.
- Now, it is written in Rust, but has to be converted in Julia (the language of the Strip simulation framework (by Maurizio Tomasi))
- Create the polarization maps (Q and U)
 - $\circ\,$ Use the I->Q and I->U data to create polarization maps with atmospheric effects

0

- Create the polarization map of the whole experiment duty cycle (1 year of observations)
 - Improve the efficiency of the mapmaker working on the speed-up of the fft part

Mandelli

Scientific framework

Systematic effects

Reliable simulation o the atmospheric contribution

Mitigation Tecniques

Conclusions and future perspetives

Thank you for this great experience!