From the Dark Ages to Reionization with CMB-S4

Marcelo Alvarez
(LBL)

CMB-S4 Summer Collaboration Meeting
August 12, 2021
what we know

Universe significantly ionized at z < 6 (quasar spectra)

Universe significantly neutral at z > 10 (large-scale CMB polarization)

Driven by ionizing radiation from stars (high-z galaxy and AGN luminosity functions)

Characterized by ionized bubbles a few to hundreds of comoving Mpc across (extrapolation)

what we don’t know

What was the mean ionized fraction vs redshift, i.e. the reionization history?

How did the sizes and morphologies of the ionized bubbles change with time?

What were the sources of reionization, and how do they differ from galaxies observed later?

How did the first supermassive black holes, with masses as large as $10^9 \, M_{\odot}$, form?
Reionization involves a broad range of astrophysical processes

astrophysical processes

- first star & black hole formation
- evolution of multiphase ISM
- early galaxy formation

model parameters

- spectral energy distribution
- ionizing photon escape fraction
- luminosity and abundance
- cloud size & abundance
- clumping factor

energetics of multiphase ISM

radiative feedback on the IGM

photon sources

photon sinks
Reionization involves a broad range of astrophysical processes

Astrophysical processes:
- First star & black hole formation
- Evolution of multiphase ISM
- Early galaxy formation
- Energetics of multiphase ISM
- Radiative feedback on the IGM

Model parameters:
- Spectral energy distribution
- Ionizing photon escape fraction
- Luminosity and abundance
- Cloud size & abundance
- Clumping factor

Ionization history & morphology

Photon sources

Photon sinks
A Diverse Landscape of Observational Probes

electrons
ionization and thermal history, morphology
CMB (SO, CMB-S4, LiteBIRD)

intergalactic hydrogen
ionization and thermal history, morphology
Ly-alpha forest, 21cm (HERA, SKA)

galaxy emission
Line intensity mapping (COMAP, TIME, CONCERTO, FYST, SPHEREx)
Lyman-break galaxies (JWST)
Galaxies from the epoch of reionization are distant and faint

Oesch et al. (2018)
Galaxies from the epoch of reionization are distant and faint

Zitrin et al. (2014)

Oesch et al. (2018)
Galaxies from the epoch of reionization are distant and faint

Zitrin et al. (2014)

Oesch et al. (2018)
Galaxies from the epoch of reionization are distant and faint.

Zitrin et al. (2014)

Oesch et al. (2018)
Galaxies from the epoch of reionization are distant and faint
A Diverse Landscape of Observational Probes

electrons
ionization and thermal history, morphology
CMB (SO, CMB-S4, LiteBIRD)

intergalactic hydrogen
ionization and thermal history, morphology
Ly-alpha forest, 21cm (HERA, SKA)

galaxy emission
Line intensity mapping (COMAP, TIME, CONCERTO, FYST, SPHEREx)
Lyman-break galaxies (JWST)
Large scale CMB polarization constrains optical depth
Large scale CMB polarization constrains optical depth and possibly more...

see talk by Xiaohan Wu
Large scale CMB polarization constrains optical depth and possibly more...

see talk by Xiaohan Wu
CMB probes patchiness of reionization through electron scattering

SOURCE
- CMB monopole
 - patchy electrons + peculiar velocity
- CMB temperature quadrupole
 - patchy electrons
- CMB primary anisotropies
 - patchy tau

OBSERVABLE
- CMB probes patchiness of reionization through electron scattering
 - **temperature**
 - \(\ell \gtrsim 500 \)
 - **polarization**
 - \(\ell \gtrsim 50 \)
 - **temperature + polarization**
 - \(\ell \gtrsim 50 \)
CMB probes patchiness of reionization through electron scattering

CMB-S4 has the statistical power to constrain the optical depth to ~5% accuracy assuming we can model patchiness well enough and that non-patchy contribution is negligible.
CMB probes patchiness of reionization through electron scattering

SOURCE
- CMB monopole
 - patchy electrons + peculiar velocity
- CMB temperature quadrupole
 - patchy electrons
- CMB primary anisotropies
 - patchy tau

OBSERVABLE
- kinetic SZ
 - temperature $\ell \gtrsim 500$
- “scattering”
 - polarization $\ell \gtrsim 50$
- “screening”
 - temperature + polarization $\ell \gtrsim 50$

see talks by
- Suvodip Mukherjee
- Paul La Plante
- Toshiya Namikawa
A Diverse Landscape of Observational Probes

electrons
ionization and thermal history, morphology
CMB (SO, CMB-S4, LiteBIRD)

intergalactic hydrogen
ionization and thermal history, morphology
Ly-alpha forest, 21cm (HERA, SKA)

galaxy emission
Line intensity mapping (COMAP, TIME, CONCERTO, FYST, SPHEREx)
Lyman-break galaxies (JWST)
The 21cm transition probes neutral hydrogen during reionization

Radio interferometers such as HERA and SKA search for the 21cm signal from reionization at ~100 - 200 MHz

These observations promise to measure the power spectrum and map out the ionized bubbles in 3D, but are extremely challenging, with only upper limits so far
The 21cm transition probes neutral hydrogen during reionization

Kolopanis et al. (2019)

Most recent
LOFAR Upper Limits

Mertens et al. (2020)

See talk by Josh Dillon
The CMB-S4 large area survey overlaps with 21cm surveys: is there a detectable cross-correlation?

See talk by Paul La Plante
A Diverse Landscape of Observational Probes

electrons
ionization and thermal history, morphology
CMB (SO, CMB-S4, LiteBIRD)

intergalactic hydrogen
ionization and thermal history, morphology
Ly-alpha forest, 21cm (HERA, SKA)

galaxy emission
Line intensity mapping (COMAP, TIME, CONCERTO, FYST, SPHEREx)
Lyman-break galaxies (JWST)

see talk by
Patrick Breysse
Talks in Dark Ages to Reionization Parallel Session

11:20–11:40 Jordan Mirocha: *Overview of high-z sources*

11:40–11:55 Suvodip Mukherjee: *Physical modeling of patchy reionization*

11:55–12:10 Xiaohan Wu: *The high-redshift tail of reionization & low-ell CMB*

12:10–12:25 Patrick Breysse: *Status of reionization-era line intensity mapping*

~20 minute break

13:45–13:00 Paul La Plante: *Cross-correlating patchy kSZ with other probes*

13:00–13:15 Toshiya Namikawa: *Optical depth - Compton-y cross-correlation*

13:15–13:30 Josh Dillon: *First upper limits from HERA on 21cm power spectrum*

13:30–14:00 Discussion
Talks in Dark Ages to Reionization Parallel Session

11:20–11:40 **Jordan Mirocha**: Overview of high-z sources

11:40–11:55 **Suvodip Mukherjee**: Physical modeling of patchy reionization

11:55–12:10 **Xiaohan Wu**: The high-redshift tail of reionization & low-ell CMB

12:10–12:25 **Patrick Breysse**: Status of reionization-era line intensity mapping

~20 minute break

12:45–13:00 **Paul La Plante**: Cross-correlating patchy kSZ with other probes

13:00–13:15 **Toshiya Namikawa**: Optical depth - Compton-y cross-correlation

13:15–13:30 **Josh Dillon**: First upper limits from HERA on 21cm power spectrum

13:30–14:00 **Discussion**

summary talk by **Zhilei Xu**