Gravitational Waves Summary Report

Sarah Shandera

With Raphael Flauger,
Parallel speakers Tania Regimbau, Robert Caldwell, Daan Meerburg, Clem Pryke, Paolo Campeti, Toshiya
Namikawa

Overview

- 1.Complementarity with direct detection I: phenomena with signals in direct detection and B-modes
 - Is the space of models sufficiently explored?
- 2. Characterizing an S4 signal:
 - Are we sure we have a primordial signal?
 - Is there evidence in B for something beyond single-field slow-roll
- 3.Complementarity with direct detection II: phenomena with direct detection and Temp/E-modes

1. Complementarity with Direct Detection I

Stochastic Background: superposition of unresolved sources

- astrophysical (unresolved mergers of compact objects)
- cosmological: primordial GWs, phase transitions, cosmic strings,

Time-line

LIGO/Virgo Search:

2101.12130

2103.08520

Direct Detection: Stochastic Background

$$\Omega_{\rm GW}(f) = \frac{f}{\rho_c} \frac{d\rho_{\rm GW}}{df}$$

As detector sensitivity increases...

more sources are resolved,

...less astrophysical stochastic background

Figure: Moore, Cole, Berry 2014

CMB-S4 Summer 2021 Meeting

Signal: cross-correlate detectors

Design and analysis point:

- Frequency domain cross product: $Y = \int \tilde{s}_1^*(f)\tilde{Q}(f)\tilde{s}_2(f)df$ optimal filter: $\tilde{Q}(f) \propto \frac{\gamma(f)\Omega_{gw}(f)}{f^3P_1(f)P_2(f)}$ with $\Omega_{gw}(f) \equiv \Omega_0 f^\alpha$

(Tania Regimbau's talk)

 $\gamma(f)$ may be much less than one depending on detector relative orientation and separation

Q(f) Should be optimized for the analysis you are doing

Signals? Require blue tilt

Single-field slow-roll

$$n_t = -r/8$$
 $r = 0.11$

Figure: Lasky et al 1511.05994

Signals? Require blue tilt

Figure: Lasky et al 1511.05994

Inflationary consistency relation $n_T = -r/8$

- Large lever-arm CMB/interferometers
- Case r=0.01
- LiteBIRD alone
- LiteBIRD + LISA
- LiteBIRD + BBO
- Not even LiteBIRD + BBO can distinguish scale-invariance from consistency relation
- 5 σ detection in LiteBIRD but no detection in BBO: bias on r, we can detect departure from scale-invariance at CMB scales due to large redtilt

Blue Tilt?

You can do it with non-minimal (but well-motivated) field content during inflation:

Nearly flat inflationary potential

Approximate shift-symmetry for the inflation

Inflation is an axion (natural inflation)

Expect couplings to gauge fields

$$\mathcal{L} = -\frac{1}{2} \left(\partial \phi\right)^2 - U(\phi) - \frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + \frac{\lambda}{4f} \phi F^a_{\mu\nu} \tilde{F}^{a\mu\nu} + \dots$$
 Inflation Coupling: sourced fluctuations

Blue Tilt + other features

GW signal is parity violating, chiral, non-Gaussian:

Figure: Caldwell, Devulder, 1706.03765

Benchmark models

satisfying BICEP2/Planck upper bound on r

Paolo Campeti slide: used optimal filter function for this analysis (from 2101.02713)

Expected?

Generic field content is well-motivated

Parameter values that match current data and give large observable signals look a bit contrived

Is the space of models well-explored?

2. Characterizing an S4 signal

The features above suggest ways to characterize any (sufficiently large!) signal

Two goals:

- Is this a primordial signal?
- Does it disfavor single-field slow-roll?

Challenges for EB

Mis-calibrating the absolute polarization angle:

$$C_{\ell}^{\prime TB} = C_{\ell}^{TE} \sin(2\alpha)$$

$$C_{\ell}^{\prime EB} = \frac{1}{2} \left(C_{\ell}^{EE} - C_{\ell}^{BB} \right) \sin(4\alpha)$$

Clem Pryke's talk; see 2012.05934 for BICEP3 results

-upshot: more to learn about how to do this

But, if signal does not overlap, less confusion

Fig. 10. The parity-violating cosmic polarization signals $\langle TB \rangle$ and $\langle EB \rangle$ from three different scenarios are shown. YM: the scenario based on the flavor-space locked gauge field presented in this article. CG: chiral gravity. CB: cosmic birefringence. We note that the YM and CG signals are similar. The CB signals strongly resemble the $\langle TE \rangle$ and $\langle EE \rangle$ power spectra shown in Fig. 9. For reference, the CB signal assumes a rotation angle $\Delta\theta=1^{\circ}$.

From Robert Caldwell

Bispectrum

Tensor NGs

Forecasts

 Forecasts show that we can do really well on squeezed limits (see S4 DSR, science book)

Shape: $\langle \mathcal{RR} \gamma \rangle$	Current	CMB-S4 goal	Conservative	CV-limited
$\langle BTT \rangle, \langle BTE \rangle, \langle BEE \rangle$				
$f_{ m sky}$	69%	3%	3%	100%
$\sigma(\sqrt{r} ilde{f}_{ m NL}^{ m local})$	28	0.79	1.2	0.052
$\sigma(\sqrt{r} ilde{f}_{ m NL}^{ m equil})$		16	24	1.7
$\sigma(\sqrt{r} ilde{f}_{ m NL}^{ m ortho})$	•••	4.4	7.4	0.41

NGs are therefore typically generated away from squeezed limit (equilateral);
 those in general, unfortunately, are harder to constrain

SNR of fNL from BICEP: Large-scale filtering

An analytic forecast when including noise and dust for BK15

BK15: constraint is worse than Planck

BK18: constraint would be much better than Planck

 Although the best way to constrain tensor non-Gaussianity is to use B-mode bispectrum, the tensor non-Gaussianity can also produce T and E bispectrum and is constrained by Planck T/E

Planck constraints

$$\sigma(f_{NL}^{
m tens})=1100$$
 (Planck Collaboration 2018)

$$f_{\text{NL}}^{\text{tens}} \equiv \lim_{k_i \to k} \frac{B_{\text{h}}^{+++}(k_1, k_2, k_3)}{F_{\zeta}^{\text{equil}}(k_1, k_2, k_3)}$$

SNR of fNL from BICEP: Additional mode loss

Restriction of triangle configuration by timestream filtering

- SNR estimate with a realistic simulation
 - 3D binned estimator is applied to BK18 B-modes (flat-sky counterpart of Bucher et al. 2016, Coulton & Spergel 2019)

$$b_{ijk} = rac{1}{N_{ijk}} \int d^2n B_i^{\mathrm{f}}(n) B_j^{\mathrm{f}}(n) B_k^{\mathrm{f}}(n) \hspace{1cm} B_i^{\mathrm{f}}(n) = \int d^2\ell e^{i\ell n} f_{i.\ell} B_\ell$$

$$f_{NL}^{ ext{tens}} = \sum_{I=ijk} b_I^{f_{ ext{NL}}=1} ext{Cov}_I^{-1} b_I$$

$$ightharpoons \sigma(f_{NL}^{
m tens}) \sim 600$$

Intrinsic Bispectrum?

The CMB bispectrum

Intrinsic bispectrum

- Besides primordial and secondary sources, the CMB will also contain intrinsic bispectra, simply due to non-linear evolution of perturbations
- These could also be possible sources of confusion (and extra variance);
- Good news is that while they could be detectable with upcoming surveys (see Coulton 2021), they likely would not interfere with search for primordial NGs

3. Complementarity with Direct Detection II

- Phase Transitions within the dark sector
- Topological Defects
- Exotic compact objects from dark matter
- Individual merger events
- New source of stochastic background (or other signals, like bursts)

Overview

- 1.Complementarity with direct detection I: phenomena with signals in direct detection and B-modes
 - Is the space of models sufficiently explored?
- 2.Characterizing an S4 signal: challenges for E/B and bispectrum
 - Are we sure we have a primordial signal?
 - Is there evidence in B for something beyond single-field slow-roll
- 3.Complementarity with direct detection II: phenomena with direct detection and Temp/E-modes