Snowmass Planning

CF7 Cosmic Probes of Fundamental Physics

Ke Fang, University of Wisconsin-Madison
CMB-S4 Summer Collaboration Meeting
08/12/2021
CF7 Cosmic Probes of Fundamental Physics
Using the windows on the universe to learn about fundamental particles and high energy physics

Science goals: CF7 covers cosmic probes of fundamental physics topics beyond Dark Matter and Dark Energy using gravitational waves, cosmic rays, gamma rays, and neutrinos, as well as their combined studies to facilitate the multi-messenger science. It also covers various tests of ΛCDM using high and low redshift observations and the potential of standard candle/siren cosmology to address existing tensions in the data.

Conveners:

- Rana Adhikari (Caltech)
- Luis Anchordoqui (CUNY)
- Ke Fang (UW-Madison)
- B.S. Sathyaprakash (Penn State)
- Kirsten Tollefson (MSU)
Past Activities

• **Town Halls** [Link to slides and recordings]
 1. Jul 21, 2020
 2. Jul 30, 2020
 3. Nov 13, 2020

• **Community planning meetings** Oct 5-9, 2020 [Link to Indico]
 74 Primordial black holes
 137 High and ultrahigh energy neutrino experiments
 138 Synergy of astro-particle physics and collider physics
 140 Future medium to ultrahigh energy gamma-ray detectors
 141 Gravitational wave source modeling
 148 Future GW facilities

+ other CF/TF-led sessions
Past Activities-Continued

• New for Snowmass 2021/2022:
 ◦ **Major Science Accomplishments since the last Snowmass:** discovered astrophysical neutrinos and gravitational waves, their electromagnetic counterparts, a large scale anisotropy in ultrahigh energy cosmic ray sky, evidence for a tension between inferred and measured values of Hubble constant

• **LOIs:** received 140 LOIs in total, 71 with CF7 as a main topic (Dec 2020)
 ◦ **By messengers:** 30, 22, 35, 45 on Gravitational waves, Cosmic rays, Neutrinos, Photons (including ~15 on cosmology, ~25 on gamma-rays)

 ◦ **By type of work:** 32 focusing on theory, the rest on experiments and detectors

• To be restarted in Sep 2021
Proposed Community White Papers

1. **Multi-messenger facilities and experiments** - umbrella paper that incorporates the GW, gamma-ray, cosmic rays and neutrino white papers; joint analysis; multi-messenger follow-up

2. **Equation of state of high-density matter and QCD phase transitions** - led by CF7

3. **Fundamental physics and beyond the Standard Model**: Tests of general relativity, the nature of black holes, exotic objects (gravastars, boson stars, fuzz balls, etc.), Scalar GWs

4. **Cosmology** (joint with CF3, CF1 & ?) - 3 papers
 (A) Paper 1 - probing the dark sector multi-messengers: dark matter, dark energy
 (B) Paper 2 - beyond the standard model: dark photons, ultra-light bosons, axions, primordial black holes, sterile neutrinos, etc.
 (C) Paper 3 - Phase transitions in the early Universe
 I. Complementarity between collider and GW signatures of first order electroweak phase transitions
 II. Probing Fundamental Physics using the Stochastic Gravitational Wave Background from the Early Universe
 III. Correlating Stochastic Gravitational Wave Background with Electromagnetic Observations
Proposed Community White Papers - Continued

5. **Gamma-ray experiments** (joint with CF6, CF1-3, IF, TF?) - umbrella paper of different techniques, science, come up with some benchmarks across experiments

6. **High-energy and ultrahigh energy neutrinos** (joint with NF4, NF10, TF11, IF10?) - umbrella paper of different experiments + theory

7. **GW facilities paper** - umbrella paper across all techniques - benchmarks

8. **Ultrahigh-energy Cosmic Rays** - umbrella paper

9. Synergy between astroparticle and collider physics (led by EF)

10. **Modeling gravitational wave sources** (jointly with TF4)

More information (related LOIs, contacts, etc) can be found in [this link](#)

Your participation is welcome!