Recent developments of commercially fabricated horn antenna-coupled Transition Edge Sensor bolometer detectors for next generation Cosmic Microwave Background polarimetry experiments

Aritoki Suzuki¹ (asuzuki@lbl.gov), Elijah Kane^{1,2}, Adrian T. Lee^{1,2}, Tiffany Liu¹, Christopher Raum^{2,3}, Mario Renzullo⁴, Patrick Truitt⁴, John Vivalda⁴, Benjamin Westbrook^{2,3}, Daniel Yohannes⁴

- 3. Radio Astronomy Laboratory, University of California, Berkeley, Berkeley CA 94720, USA 1. Physics Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA 4. SeeOC Inc., Elmsford, NY, 10523, USA
- 2. Physics Department, University of California, Berkeley, Berkeley CA 94720, USA

Motivation

- Next generation Stage-IV ground based CMB experiment, CMB-S4, will make a definitive measurement of CMB polarization with O(500,000) detectors
- Commercial micro-fabrication foundry's high fabrication throughput enables this order of magnitude increase in detector count
- CMB-S4 recently selected horn antenna-coupled TES bolometer detector for the base line detector technology •
- Seegc have successfully fabricated sinuous antenna coupled TES detector arrays previously. We adapted most of the fabrication processes to fabricate horn coupled detector arrays

Commercial TES bolometer detector fabrication

- Seeqc Inc. (https://seeqc.com/) is a company based in New York state that specializes in development and fabrication of superconductor electronics
- Engineers at Seegc have extensive expertise and experience in superconducting microfabrication
- Seegc Inc. recently procured DRIE etcher for through wafer fabrication process
- Every fabrication steps was done at Seeqc Inc.
- Seeqc also has multiple dilution refrigerators for cryogenic characterization of devices
- Seegc uses industrial-scale fabrication method to increase throughput and reduce cost per wafer
- Commercial techniques for stringent quality assurance improve uniformity, repeatability, and yield by using high throughput fabrication and metrology equipment

Horn couple detector fabrication

- Fabrication steps for lenslet+sinuous antenna coupled detector and horn coupled detector are identical except for how silicon substrate is etched to release TES bolometer
 - Lenslet coupled detector: XeF2 etch
 - Horn coupled detector: DRIE etch
- We made two changes to the fabrication process:
 - Thicker low stress silicon nitride to survive DRIE process
 - Back side lithography for DRIE process
- We used stealth laser dicing technique offered by GDSI to dice large hexagonal arrays without breaking released membranes
- TES bolometers successfully operated
- We fabricated prototype detector arrays for the CMB-S4 project

Dual Tc TES bolometer

- We have also developed a design to achieve TES sensors with two different superconducting temperatures (Tc) without changing the fabrication process.
- We modified Tc using a superconducting proximity effect between Nb and AlMn alloy. TES material, AlMn alloy, sandwiched between Nb gaps (1 um ~ 4 um) to raise its Tc.
- Dual-Tc TES sensors are useful when same the detectors are required to operate under different incoming power.

Horn coupled detector

and Register

Small-scale Clumping at Recombination and the Hubble Tension

Earlier recombination $(\langle n^2 \rangle > \langle n \rangle^2) \Rightarrow$ smaller sound horizon $r_S \Rightarrow$ higher H_0 at $\theta_s = \text{const.}$

But different damping scale: comov. r_D and angular $\theta_d = r_D/r_*$, clearly detected with CMB-S4 precision.

https://arxiv.org/abs/2108.02747

August 9, 2021

1/1

Recent Progress on Frequency Domain Multiplexed Readout of TES Bolometers

Tucker Elleflot¹, Aritoki Suzuki¹, Kam Arnold², Stephen Boyd³, Chris Bebek¹, Robin Cantor⁴, Kevin T. Crowley⁵, John Groh⁶, Tijmen de Haan⁷, John Joseph¹, Adrian T. Lee^{1,5}, Tiffany Liu¹, Joshua Montgomery⁹, Megan Russell², Qingyang Yu⁵

 Lawrence Berkeley National Laboratory
 ² University of California San Diego
 ³ University of New Mexico
 ⁴ Star Cryoelectronics
 ⁵ University of California Berkeley
 ⁶ National Institute of Standards and Technology
 ⁷ High Energy Accelerator Research Organization
 ⁸ McGill University

- Demonstration of lowest readout noise to date with DfMux
- ~5x reduction in residual superconducting resistance
- TES operation with inductive bias element

Millimeter-Selected High-z Proto-Clusters in the South Pole Telescope Survey

Scott Chapman, SPT-SMG Collaboration Rotermund et al. 2021, MNRAS, 502, 2, 1797 Hill et al. 2020, MNRAS, 495, 3, 3124

The South Pole Telescope

SPT2349-56 at *z* = 4.3

• 1.4, 2, & 3mm 2500 deg² SPT survey

- discovery of rare, yet bright millimetre-selected sources
- $\sim 90\%$ are gravitationally lensed
- ~ 10% break-up into several individual galaxies
- Proto-clusters (PC)
- high-z progenitors to clusters most massive virialized structures in the universe
- high mass densities, high merger rates, expected to host massive galaxies observed as luminous starbursts
- excellent laboratory to study star formation and

Lyman-Break Galaxies (LBGs)

- UV-bright (rest-frame) galaxies presenting a strong Lyman break in their SED
- various colour-selections can be adopted to search for LBGs within a narrow redshift window
- very effective at identifying optically-selected proto-clusters
- colour-criteria for $z \sim 4$ proto-clusters g - r > 1; -1 < r - i < 1; 1.5(r - i) < g - r - 0.8

.

See talk 021 in cosmology session by Ryley Hill

• Brightest proto-cluster of the SPT-PC sample

- 23 SMGs within its core no larger than the Milky Way dark matter halo!
- GMOS g,r,i-band image
 LABOCA: purple contours
 ALMA SMGs: green circles
 LBGs: cyan squares

- Optical follow-up in Gemini-GMOS *g*,*r*,*i*-bands - SMGs are faint/undetected in optical/near-IR bands
- revealed a strong overdensity of LBGs within the inner core, and a subsequent modest overdensity out to 3-arcmin-radius
- barely a 3σ significance following the Toshikawa et al. (2018) detection criteria

Conclusions from SPT2349-56

Exceedingly difficult to identify SPT2349-56-like, millimetre bright proto-clusters in large-field surveys through optical overdensity techniques

Important to search for early formative structures at millimetre wavelengths

Further SPT-PCs

- Will the findings of SPT2349-56 hold for other sub-millimetre selected proto-clusters?
- 9 proto-cluster candidates in the SPT-PC sample
- SPT0457-49 may be a close analog to SPT2349-56
- 6 SMGs identified in shallow ALMA data, z = 4
 early evidence of a LBG overdensity within the
 - core larger than that of SPT2349-56
- IRAC 4.5 µm image
 LABOCA: purple contours
- ALMA SMGs: green contours
 LBGs: blue squares

Searches for LBGs in further SPT-PC candidates is ongoing, with the goal of putting these systems in context of early structure formation and how they may differ from opticallyselected proto-clusters