
WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

WBS 1.08.02: Observatory 
Control System

L3 Lead - Brian Koopman



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

Name: Brain Koopman

Institution: Yale University

Discipline: Physics / Cosmology

Previous experience:

● Design and development of DAQ, monitoring, and control software systems 
for the Simons Observatory. Core developer of the Observatory Control 
System. (3 years)

● PhD working on ACT with a focus on polarization calibration, detector testing, 
and improving the remote observing experience through development of web 
based tools. (6 years)

2

Presenter Introduction



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

See Trade Study Discussion from Cosmin

3

Key Driving Requirements for 1.08.02

https://docs.google.com/presentation/d/1bIb8Rznzn-TVHXtt3ODJwWq5xqfgbL_-mKhSWF6dT5Q/edit#slide=id.p


WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

● The Observatory Control System (1.08.02) is closely tied to Observatory Data 
Acquisition (1.08.03). 

● The control framework will also send data/be used to fetch data to/from the 
monitoring and alarms system (1.08.04). 

● Subsystem Development and Support (1.08.05) and Deployment of DAQ and 
OCS (1.08.06) will both use the software developed within 1.08.02.

4

Inter-L3 Interfaces within this L2
CQ2



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

Scope: 

● To deliver a control 
and data acquisition 
software package for 
all subsystems

● Live and historical 
monitoring of 
‘housekeeping’ data 
and meta-data

● Timing
● Non-safety alarming. 

5

Overview/Scope CQ2



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021 6

Connection Scheme

LAT or SAT

Bolometer r/o

Telescope ACU

DR

thermometry

calibrators

.

.

.

Data 
Management

LiveLook monitor
(HK mainly)

Commands (via 
script, interface, 
command line, 
whatever): as 

simple as ‘take 
data’ as 

complex as all 
schedule for a 

day

Bolometer data 
aggregator

HK data aggregator

Data for * dets:
83Mbps (per SAT)

1.7 Gbps (LAT)
Hosted on DAQ 

computers, etc in a 
centralized control 

station

Timing *on the network* via PTP/SyncE provided

Disk data 
Quick look

CQ2



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

● Be usable by all hardware groups
○ Hardware groups should prefer interacting with “real” DAQ to parallel home-grown systems -- 

avoids duplicated effort, gives early testing and evaluation
● Use commodity hardware to the extent possible
● Be modular:

○ Many pieces need to plug into it
○ Scale from single-lab to full Observatory, and the same for both sites (Chile, SP)
○ Allow non-DAQ personnel to write control interfaces for small hardware pieces

● Be open source, versioned, tracked, CI’d, reviewed, and distributed, common 
language

● The DAQ+Control interface to the hardware is digital: 
○ DAQ is software-only and Ethernet/IP-based

7

DAQ+Control Design Principles 



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

● Support high-level command and distributed control of:
○ Detector readout including detector calibration, tuning
○ Telescope motion in a variety of modes
○ Cryogenics 
○ Data acquisition start/stop, independent for all subsystems
○ Other (calibration, thermometry, heaters, hardware configuration parameters, etc)

● Support observing scheduling (containing ordered commanding of detectors, 
telescope, and other auxilliary components)

● Interface with telescope control provided by vendor at the level of az/el 
itinerary delivered by network/serial

● Support for user access control 

8

Control Requirements flowdown
CQ1



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021 9

Technical Design Goals: Control
● Use commercial or open source software and leverage current work where 

possible

● Must be able to run on different OSes

● Must be easily distributed and tested

● Control code for a component must be able to be developed by hardware 
experts.

● Common software across all test-stands and observatory

● Modular and scalable: All components of the system (control, monitoring) 
must be easily configurable for different labs by scientists doing the testing



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021 10

Technical Design Overview: Control

Key features:
● Assumes distributed devices, communicating via a commercial messaging layer 

● In SO example uses WAMP protocol via crossbar.io router:
○ On the hardware side, there is a device-specific API: an agent exposes author-chosen operations 

from the list of available operations from the hardware vendor
○ The user-facing side is a client which uses the primitives for the exposed commands 

(register/calls/publishes/subscribes)

Hardware

Docker

“Agent”

User node

“Client”

Network

Messaging 
layer

Messaging 
layer



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

OCS Overview

● The Observatory Control System (OCS) is a distributed control system 
designed to coordinate DAQ across an observatory

● Design goals:
○ Easy to use
○ Easy to add additional components to for new hardware
○ Scalable from small lab deployments to full site deployment

● Mostly written in Python, with use of some open source systems
● Main messaging and data passage system is built on the open source 

crossbar.io platform
● Use additional open source platforms for live and historical data viewing

○ Grafana + Loki - Web based plotting and observability software, and log aggregation
○ InfluxDB - Time series database backend for Grafana

https://crossbar.io/
https://grafana.com/
https://grafana.com/oss/loki/
https://www.influxdata.com/


WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

OCS Architecture
● Two main components to OCS:

○ Agents - long running software servers that interface with hardware or other software
○ Clients - scripts that orchestrate the actions of one or more OCS Agents

● Agents make available two types of commands:
○ Tasks - function that ends in finite time
○ Processes - function that runs for an open-ended amount of time, until stopped by a client



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021 13

Background: Docker use case for SO
● Identified Docker as a potentially useful software early on in OCS development
● Distributed, long running servers (effectively daemons) with varying dependencies, often multiple 

copies of them
● Docker images developed for:

○ spt3g_software
○ so3g
○ ocs/socs

● Smoothed out deployment of Agents and their dependencies, particularly spt3g and so3g deps
● Brought installation of full DAQ system from ~several days of a computer savy person’s effort down 

to ~1 hr
● Versions and defines a DAQ system via Docker tags and docker-compose.yaml config files

○ Enables rapid re-deployment of a system that needs replacement
■ Example: Computer died at UPenn, was able to reinstall OS on new computer and bring 

up old DAQ Docker stack in <30 mins
● Not much overhead, containers start up quickly, and allow for easy monitoring of system resource 

usage per container
● Docker networking facilities offer some nice features -- name resolution, overlay networking, 

isolation from host network



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

OCS Agents

● Small set of “core” OCS Agents - ocs repo
○ HK Aggregator Agent - writes all data from all HK Agents to disk in .g3 format
○ InfluxDB Publisher Agent - writes all data (possibly downsampled) from HK Agents to InfluxDB
○ Registry Agent - Keeps track of all other running OCS Agents on the network and the status of 

their tasks/processes
○ Host Master Agent - Can control startup and shutdown of Agents depending on OCS 

configuration
○ Fake Data Agent - Simulated data Agent used for testing

● Large set of Simons Observatory Control System (socs) Agents - socs repo
○ Provides functionality specific to SO hardware
○ Over half have been user contributed (demonstrating ease of use among labs)
○ Major Agents are functional and are being tested

■ ACU - telescope pointing
■ CHWP - control and readout of the CHWPs 
■ SMuRF - control and monitoring of the detector readout crates and collecting output files

https://github.com/simonsobs/ocs
https://github.com/simonsobs/so3g
https://github.com/simonsobs/socs


WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

SOCS Agents



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

OCS Clients

● Send commands to multiple Agents on the network
○ i.e. Servo DR to fixed temperature, take IV curve, repeat for these N temperature setpoints

● Clients take two primary forms:
○ Python script run on command line or in Jupyter
○ Javascript run in OCS-web 

● Python clients tend to be setup specific
● OCS Sequencer - runs clients with nice web front end for orchestrating site 

Agent operations (still under development)
○ Can be used in labs to run clients



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

● Network (nearly) entirely defined by small collection of configuration files (2 
key ones)

○ Docker Compose File - defines docker containers running Agents
○ OCS Site Config File - defines which Agents can be run and what input parameters they 

should be sent at startup
● Version controlled
● DAQ expert can identify configuration issues by just viewing these files most 

of the time
● Allows very rapid re-standing up of a DAQ system that might need to be 

redeployed for whatever reason (i.e. HDD failure, etc.)
○ Clone files, minor configuration on system/installation of packages, standup system.

17

OCS Network Configuration



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

OCS 
Documentation

● Extensive documentation allows 
users to configure their own 
systems

● Detailed installation instructions
● Developer instructions

○ Describes Agent and 
client development

○ Details about various 
designs within OCS

● Individual Agent docs
○ Describes Agent 

functionality
○ Example configuration 

file information
● Has been key in successful 

adoption of OCS



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

Example OCS Layout
● SAT1 deployment as of a few months 

ago
● Main computer (manny) runs most of 

the Agents, and includes live monitoring 
system

● smurf-srv16 runs SMuRF controller, 
Streamer, and Monitor agents - 
interfaces with SMuRF crate

● 3 other small computers for interfacing 
with specific hardware:

○ Bluefors DR computer 
(Windows)

○ CHWP NUC
○ Lakshore 240 NUC



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

Full Site Layout
● Full site layout is ~5x the size of 

the UCSD SAT1 layout
● Contains five different hosts:

○ 1x Common host - 
shared HK Agents, i.e. 
weather monitor

○ 3x SAT host
○ 1x LAT host

● Each is on its own crossbar 
server

● HK data published to a common 
InfluxDB for web monitoring

● Additional OCS hosts on 
SMuRF servers, hardware 
NUCs

● Tested at scale
● Similarly scale up for S4



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

Testing at Scale
● OCS is deployed to many labs at a small scale (i.e. at most the SAT or LAT 

setups)
● Need to evaluate OCS’s capabilities at full site scale
● Results will inform computer hardware requirements
● Tests performed on a single server within virtual machines:

○ Ubuntu 20.04
○ 2x 16-core Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
○ 1TB disk
○ 192 GB RAM

● Goal was to run full data rate HK and detector data simulators for all 
telescopes and record performance metrics

● Monitoring performed with system monitoring tools



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

● 1 crossbar server per telescope platform
● Shared InfluxDB + Grafana instances
● 100+ HK Agents publishing 26,000 points/sec

○ Largest platform publishing 7k points/s through crossbar at ~10% vCPU usage, 135 MiB RAM

● 86k simulated detector timestreams
● Resource usage:

○ Individual agents <1.5%, generally ~0.5% vCPU, ~30 MiB RAM
○ HK Aggregator (writing .g3 files) 3-5% vCPU, 100 MiB RAM
○ InfluxDB Publisher ~10% vCPU, 40 MiB RAM
○ InfluxDB ~34% (spikes to ~184%) vCPU, ~800 MiB RAM

● InfluxDB and writing to it are the most resource intensive parts.
○ Have implemented a separate path to InfluxDB than to .g3 files so downsampled data could be in live 

monitor
○ Proper application of retention policies and sampling rates should limit any InfluxDB issues
○ Possible to swap out if it is limiting (involves writing one new OCS Agent)

22

Scale Testing OCS



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

● Real-time browser based monitoring of auxilliary (‘house-keeping’) and 
diagnostic data, including detector meta-data.

● Decimated views of historical data (>1week)

● Hierarchical alarm system based on housekeeping data

● Must monitor HK signals + meta-data from all telescopes at ~once/5sec: 

○ ~200 sources/telescope, ~3800 samples @ SP 

○ Data at different rates: eg telescope data (20 fields/telescope @ 200 Hz = 76,000 
samples/sec; ~1000 thermometers @ 4 Hz = 4000 samples/sec, etc). 

○ Should anticipate ~100,000 fields/sec @ SP as driver for this requirement

23

Monitor+Alarms Requirements flowdown
CQ1



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

OCS Monitoring Overview
● Goals when building the monitoring system:

○ Remotely monitor housekeeping data and OCS operation through a web browser
○ Support user configuration of data queries
○ Enable both live and historical data viewing

● Selected a set of tools for monitoring:
○ Grafana - Web interface for interactive visualization of data in the web browser
○ InfluxDB - Time series database with nice integration to Grafana
○ Loki - Log aggregation system from the same people who made Grafana

● These are open source tools with large communities, documentation, and 
updates

● Currently available and in use at all of the SO institutions running OCS
● Also being validated in the field at pole (SPT-3g)



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

Notable Features
● Configured dashboards are saved and can be recalled or linked to

○ I.e. a dashboard describing the health of a DR can be configured once and referred to later
● “Explore” menu allows for on the fly exploration of data that might not have a 

dashboard already configured (and can be transferred to a dashboard)
○ Useful for tracing a particular event or issue

● Grafana + InfluxDB has a built in alerting mechanism
○ Currently in use at labs for events such as “thermometer X is > 1K”
○ Send Slack message with associated plot

● Loki log aggregation allows central view of system logs
○ All configured OCS Agents can log to Loki, allowing errors to be tracked down on the web 

interface



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

Example Grafana Dashboards

● SO SAT1 Grafana Dashboards
● Cooldown monitoring (upper left)
● Load Curves at 100 mK (bottom left)
● CHWP temperature monitoring (top right)
● All viewable remotely via website
● InfluxDB backend
● Data also saved to .g3 files



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

Notable Features
● Configured dashboards are saved and can be recalled or linked to

○ I.e. a dashboard describing the health of a DR can be configured once and referred to later
● “Explore” menu allows for on the fly exploration of data that might not have a 

dashboard already configured (and can be transferred to a dashboard)
○ Useful for tracing a particular event or issue

● Loki log aggregation allows central view of system logs
○ All configured OCS Agents can log to Loki, allowing errors to be tracked down on the web 

interface
● Grafana + InfluxDB has a built in alerting mechanism

○ Currently in use at labs for events such as “thermometer X is > 1K”
○ Send Slack message with associated plot



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

Explore + Loki Menus



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

Notable Features
● Configured dashboards are saved and can be recalled or linked to

○ I.e. a dashboard describing the health of a DR can be configured once and referred to later
● “Explore” menu allows for on the fly exploration of data that might not have a 

dashboard already configured (and can be transferred to a dashboard)
○ Useful for tracing a particular event or issue

● Loki log aggregation allows central view of system logs
○ All configured OCS Agents can log to Loki, allowing errors to be tracked down on the web 

interface
● Grafana + InfluxDB has a built in alerting mechanism

○ Currently in use at labs for events such as “thermometer X is > 1K”
○ Send Slack message with associated plot



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021 30

Detector Live Monitoring
Key features:

● Teeing off a copy of 
the detector 
datastream from the 
DAQ

● Baselining an 
updated version of a 
tool (Lyrebird) used 
by SPT-3G, PB2, and 
SO

● Particularly important 
for lab testing and I&C 
tasks



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021 31

That design is meant to achieve:

● Modular, flexible, scalable: interface with many, changing hardware 
components, with different configurations between labs, etc 

● Must robustly work in a distributed, heterogeneous environment of 
computers

● Efficient development: use commodity, commercial, or otherwise available 
software instead of building our own

● The user is the boss: Must be responsive to user needs and function as a 
live monitor for lab activities with minimal expertise on their part



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

Alarms
● We are adapting the ACT alarms system for use on SO

● Each alarm has a simple script that checks values from OCS
○ Conditionally triggers various alarm levels, i.e. OK, WARN, ERROR

● Alarm states written to a backend database

● State dependent actions, i.e. send email, SMS, phone call
○ SMS + Phone calls sent via twilio

○ Will interact with South Pole alarm system provided by SP Station admin

● Updated web frontend under development

● Backend code has many years of testing on ACT

https://www.twilio.com/


WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

Alarms



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

Alarms



WBS 1.08.02 Observatory Control System Conceptual Design Review - September 28th, 2021

The framework for OCS is complete and fulfills the requirements for S4. The 
package was developed for use on the Simons Observatory, and is widely used 
already in labs. It will also see thorough testing in the field in the near future.

Overlapping team members with SO means high familiarity with OCS, easing 
integration with S4.

As hardware is being selected and integrated in labs, driver code and OCS Agents 
will need to be written for use on S4. https://github.com/CMB-S4/s4ocs 

35

Conclusions

https://github.com/CMB-S4/s4ocs

